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Abstract—State-of-Charge (SOC) information is very crucial 

for the control, diagnostics and monitoring of Li-ion 

cells/batteries. Compared to conventional data-driven or 

equivalent circuit models often employed in battery 

management systems, electrochemical battery models have the 

potential to give physically accurate the SOC information by 

tracking the Li-ion concentration in each electrode. In this 

paper, two nonlinear observer designs are presented to estimate 

Li-ion battery State-of-Charge based on reductions of an 

electrochemical model. The first observer design uses a 

constant gain Luenberger structure whereas the second one 

improves it by weighing the gain with the output Jacobian. For 

both observer designs, Lyapunov’s direct method is applied 

and the design problems are converted to solving LMIs. 

Simulation results are included to demonstrate the effectiveness 

of both observer designs. 

 

I. INTRODUCTION 

Electrified vehicles are predicted to take increasing shares 
in the vehicle market in the near future because of their 
reduced on-board emissions and improved energy efficiency 
benefits [1, 2]. Lithium-ion (Li-ion) batteries have been 
gaining substantial interest in these vehicles and many other 
applications due to their high energy density, negligible self-
discharge and less environmental impact. However, advanced 
Battery Management Systems (BMS) with precise 
knowledge of State-of-Charge (SOC) are essential for safe 
and efficient operation of Li-ion batteries. In this paper, we 
will concentrate on SOC estimation for an individual Li-ion 
battery cell. 

In current literature, various SOC estimation algorithms 
exist, which can be broadly categorized into two groups: 
model-free approaches such as coulomb-counting, Open 
Circuit Voltage (OCV) vs. SOC maps [3] and model-based 
approaches. Model-free approaches are easy to implement 
but prone to measurement errors and inaccuracy. Model-
based approaches can be divided into three categories 
depending on the source of the model: data-driven model, 
equivalent circuit model (ECM) and electrochemical model. 
Data-driven approaches derive models from measurement 
data [4]. ECM-based approaches use an electric circuit model 
to mimic the battery behavior [5, 6 and 7]. Although these 
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approaches are simple in implementation, the drawbacks are 
requirement of extensive parameterization and the lack of 
physical information about the battery.  

Electrochemical model-based approaches rely on a 
physical model derived from porous electrode and 
concentrated solution theories. In the current literature, there 
are two broad classes of electrochemical model-based SOC 
estimators. The first class utilizes the so-called pseudo-two-
dimensional (P2D) full order battery cell model [16, 17] 
directly. A particle filtering framework based on this model 
has been proposed in [14]. However, the computational 
burden is high in real-time implementation of such 
estimators. Another work [15] proposed a Luenberger-type 
observer for the P2D model but the stability properties of the 
observer were not analyzed fully, possibly due to the 
complexity of the model. 

The second class of electrochemical model-based 
estimators reduces the model complexity by simplifying the 
P2D model by approximating both electrodes as single 
spherical particles (generally referred to as the Single Particle 
Model (SPM)). A PDE estimator has been designed based on 
SPM in [8]. In some other works, an ODE approximation of 
this SPM PDEs has been considered for estimator design. A 
reduced linearized model with a Kalman filter has been used 
in [9, 10]. Some approaches apply the Extended Kalman 
Filter (EKF) on some ODE versions of the SPM [11, 13]. The 
downside is that EKF does not provide an optimal estimate 
and high initial state errors may lead to divergence owing to 
internal linearization. In addition, for higher dimensional 
approximations, the computational burden can be high for 
EKF. The SPM model was extended in [12] adding 
electrolyte dynamics followed by designing an Unscented 
Kalman Filter (UKF). However, the computational 
complexity of UKF can also be high for real-time 
implementation. Despite good performance, one of the 
drawbacks of EKF/UKF is that the sufficient conditions [21] 
for the convergence or boundedness of the estimation error 
are in reality difficult to impose or verify [22].  

From the above review on electrochemical model-based 
SOC estimators, it can be concluded that most of the existing 
work has one or more of the following issues: 1) utilizes a 
fully linearized model, 2) computationally expensive, and 3) 
lacks theoretical verification of the convergence of the 
estimation error. In this paper, two nonlinear observer 
designs have been proposed which address the above issues. 
These observers utilize an ODE approximation of the SPM 
where the observer design boils down to solving a Linear 
Matrix Inequality (LMI) problem. The design process 
preserves the essential output nonlinearity of the system, and 
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once the observers are designed, the implementation has a 
very low computational burden. The asymptotic convergence 
of the estimation error can be guaranteed theoretically using 
Lyapunov’s direct method. The performance of the observers 
is demonstrated by applying the observers on the SPM and 
P2D models of a Li-ion battery cell. 

The rest of the paper is organized as follows. Section II 
reviews the Li-ion battery cell model adopted for this study, 
Section III outlines the details of the two nonlinear observer 
designs, and Section IV presents results and discussions. 
Section V summarizes the conclusions of the work. 

 

II. LITHIUM-ION BATTERY CELL MODEL 

Full order battery cell P2D electrochemical model [10, 16 
and 17] contains accurate physical information of the battery 
internal dynamics. However, it is computationally expensive 
for real-time implementation. Therefore, a reduced version of 
the P2D model, Single Particle Model (SPM) that 
approximates the electrodes as spherical particles is 
considered [11, 13]. This assumption leads to two linear 
solid-state diffusion PDEs given by (1), with a nonlinear 
output voltage map given by (2), which is derived from 
Bulter-Volmer kinetics. In this framework, the bulk SOC is 
directly related to the summation of Li-ion concentrations 
along the radius of the spherical particle. 
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where   
  is the Li-ion concentration of the positive and 

negative electrode,   is the cell-voltage and   is the 
charge/discharge current. For definitions of the rest of the 
variables, the reader may refer to Table I. 

As discussed in [13], in this SPM, the states are weakly 
observable from the voltage output. As a remedy to this 
problem, the approach in [8] is followed, where the positive 
electrode diffusion dynamics is assumed to have an algebraic 
relationship with that in the negative electrode. The physical 
reason behind this assumption, as also noted in [8], is the 
faster diffusion dynamics in the positive electrode compared 
to that of the negative electrode. This assumption reduces the 
model to a single PDE governing the dynamics in the 
negative electrode, which is strongly observable from the 
output. The local observability of this reduced model can be 
easily verified using model linearization at different operating 
points. 

 
 

Figure 1. Schematic of Single Particle Model 

 
TABLE I: LI-ION BATTERY MODEL NOMENCLATURE 

Symbol Definition and Unit 

  Current collector area (cm2) 

  
  Specific surface area (cm2/ cm3) 

   Electrolyte phase Li-ion concentration (mol/cm3) 

  
  Solid phase Li-ion concentration (mol/cm3) 

    
  Solid phase Li-ion concentration at surface (mol/cm3) 

      
  Solid phase Li-ion saturation concentration (mol/cm3) 

  
  Effective diffusion coefficient in solid phase (cm2/s) 

  Faraday’s constant (C/mol) 

  Current (A) 

   Length of the cell (cm) 

  Radial coordinate (cm) 

  Radius of solid active particle (cm) 

 ̅ Universal Gas Constant (J/mol-K) 

   Contact film resistance (Ω) 

  Temperature (K) 

   Open circuit potential (V) 

   Charge transfer coefficient  

Superscript 

  positive/negative electrode 

 
To approximate the PDE in (1), the method of lines 

technique is used where the spatial derivatives are discretized 
using finite difference methods. This leads to a set of ODEs 
that form the finite dimensional state-space model of the 
battery cell. The central difference formula is used along with 
the imaginary node concept. The spatial domain is discretized 
into (M+1) nodes. The                are the Li-ion 
concentration states at the nodes;    is the concentration of 
the center node of the particle and    is the concentration of 
the surface node of the particle. An illustration of SPM along 
with the finite difference discretization adopted is given in 
Fig. 1. The resulting ODEs are given in (3).  
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with       (   ), discretization step      , 
    

    ,       
      . It can be noted that model (3) 

249



  

provides information about bulk SOC, which indicates total 
charge left in the cell, and surface SOC, which is an indicator 
of available power. Bulk SOC of the cell can be computed as 

        ∑    
 
    whereas     indicates the surface SOC. 

The voltage equation can be formed from (2) by substituting 
    

      and     
             where    and    are 

constants in the algebraic relationship between cathode and 
anode Li-ion concentration. These constants for model 
reduction can be derived based on conservation of total 
number of the Li-ions [8]. 

 

III. NONLINEAR OBSERVER DESIGN 

The above model (3) can be re-written in the state-space 
form: 

 ̇        
   (   ) (4) 

where states                  , input current     
 , output voltage      , the matrices   and   are 
derived from (3) and the output function   is formed by (2) 
as discussed in previous section. It is observed that keeping 
the zero-th node dynamics in the state-space model leads to 
unobservability. As a remedy, the zero-th node dynamics is 
removed from the state-space model. This does not lead to 
any information loss as the zero-th node dynamics can be 
reconstructed using the estimated 1

st
 node information. 

Finally, the problem at hand is to estimate the states of the 
system (4) which is described by linear dynamics with 
nonlinear output. The local observability of the system is 
verified at different operating points using the state-space 
model based on the A matrix and linearized output C matrix 
from the nonlinear output map in (4).  

 
 

Figure 2. Output Voltage as a Function of State 

 
The output function of the system is shown in Fig. 2 (with 

respect to    , since the output is only a function of surface 
concentration of Li-ions) for some given input. It can be 
noted that the trend of the output function remains the same 
irrespective of the input value; only a voltage offset is added 
due to different resistive drops. It is clear that the output 
function is strictly increasing and continuously differentiable 
with respect to the state within the range of operation. The 
continuous differentiability property of the output function 
serves as a sufficient condition for Lipschitz continuity [18]. 
These observations will be exploited in the two designs 
below. An estimate of the Lipschitz constant can be found as 

the    ( ‖
  

  
‖) within the operating region. Practically, the 

Lipschitz constant for a Li-ion cell can be estimated from 
maximum slope of battery voltage vs. state-of-charge data 
usually given in datasheets.  

A. Nonlinear Observer Design I: Constant Gain Observer 

In this first design, the Luenberger observer structure (5) 
is chosen. 

 ̇̂    ̂      (   ̂) 
 ̂   ( ̂  ) 

  
(5) 

The constant observer gain   is to be designed. The 
estimator error dynamics is given as: 

 ̇̃   ̇   ̇̂    ̃    (6) 

where     (   ̂)     (   )   ( ̂  )  

The previously mentioned Lipschitz continuity condition 
can be written as:  

‖ (   )   ( ̂  )‖   ‖ ̃‖ (7) 

where   is the Lipschitz’s constant. Now, using Holder’s 
inequality and Lipschitz continuity condition,  

‖ ‖  ‖ ‖‖ (   )   ( ̂  )‖ 

⇒ ‖ ‖   ‖ ‖‖ ̃‖ ⇒           ̃  ̃ 

By adding a new (tuning) term, this condition can be 
modified as:  

     ̃  (     )   ̃         (8) 

where    is some known positive definite matrix of the 

designer’s choice and I is an identity matrix of appropriate 
dimension. The inequality (8) can be written as: 

  ̃    [
(     )  

      
] [

 ̃
 
]    

 

(9) 

Then, a Lyapunov function candidate    ̃   ̃ is chosen to 
analyze the stability of the observer error dynamics where   
is an unknown positive definite symmetric matrix. The 
derivative of the Lyapunov function candidate is given as:  

 ̇   ̃          ̃   ̃        ̃ 

For  ̇ to be negative definite, the following condition 
should be satisfied, 

   ̃    [ 
       

   
] [

 ̃
 
]    

 

(10) 

Therefore, for the observer dynamics of the given system 
to converge to zero asymptotically, the following LMIs must 
be satisfied for any suitable positive define    of the 
designer’s choice, 

     [ 
       

   
]    

[
(     )  

      
]    

 

(11) 

Using the s-procedure [19], the 2
nd

 and 3
rd

 LMIs of (11) 
lead to the condition: 

 [
       (      )   

    (    )
]      

with some    . 

250



  

These LMIs can be solved using MATLAB’s LMI Toolbox 
posing the problem in the following form: 

[ 
         

     
]            

(12) 

where   is unknown symmetric positive definite matrix, 
     (with scalar   (      ) as the element  along the 
diagonal) and      (with scalar     as the element  along 
the diagonal) are unknown positive definite diagonal matrices 
with same elements along their diagonal, and  (      
 ) is a positive definite matrix of the designer’s choice. 
Feasible solution of this LMI problem will result in negative 

definite  ̇, which guarantees asymptotic convergence of the 
estimation error in the absence of measurement noise and 
parametric/model uncertainty. The unknown observer gain 
vector can be solved for from the following: 

    
 

   
 

     
(13) 

Note that (13) is only a condition on the sum of squares of 
observer gain vector elements. This provides an additional 
degree of freedom in choosing the individual elements of the 
gain vector.  

With the above, we have established that the observer 
design can be consolidated as one of solving the LMIs (12). 
The tuning mechanisms of this design procedure are: the 
choice of   and choice of individual observer gain vector 
elements based on the condition (13). Different choices of 
these two will result in observers with different error 
convergence rates. 

Systematic Gain Tuning Procedure: 

1. The choice of   has to do with feasibility of the LMI 
problem (12) and the desired convergence rate. Choose 
the structure     . Initialize   with an arbitrary 
higher value greater than 1. 

2. Start increasing   until a feasible LMI solution is 
achieved. 

3. Once the LMI is feasible, record the value of     and 
repeat the procedure with further increasing  . 

4. Finally, for all the feasible values of     assign the 
individual gain elements. Then select the observer gain 
  that gives the desired convergence rate. 

B. Nonlinear Observer Design II: Observer with Nonlinear 

Feedback 

The drawback of the constant gain observer described 

above is that it will feed the output error with the same 

amplification throughout the state trajectory. In some 

regions of the state space, where the sensitivity of the 

output with respect to the states is very low, constant gain 

tends to inject noise/disturbance without any useful 

information. Referring to Fig. 2, in the middle part of the 

state region the sensitivity of the output is very low. In this 

region, the constant gain could be disadvantageous. This 

fact motivates to have a gain-scheduled observer whose 

gain varies depending on the region of the state-space. In 

this design, the Jacobian of the output with respect to states 

is used to weigh the gain leading to the following structure 

[20]: 

 ̇̂    ̂      [
  

  
]
   ̂

 

(   ̂) 

 ̂   ( ̂  ) 
  

(14) 

The error dynamics is given as: 

 ̇̃    ̃   [
  

  
]
   ̂

 

( (   )   ( ̂  )) 
  

(15) 

Again, a Lyapunov function candidate    ̃   ̃ is 
chosen to analyze the convergence of the observer error 

dynamics, where P is an unknown positive definite 
symmetric matrix. The derivative of the Lyapunov function 
candidate is given as:  

 ̇   ̃          ̃    ̃   [
  

  
]
 

 ̃ 
 (16) 

where  ̃   (   )   ( ̂  ) is the output error. Considering 
the first term of (16), the following condition is imposed to 
ensure the negative definiteness of the first term: 

 ̃          ̃    ̃   ̃   ̃     ̃  (17) 

where   and   are positive definite matrices of the 
designer’s choice. The idea is to find a positive definite 
symmetric matrix   that satisfies (17). Assuming such   
exists, the estimator gain matrix is chosen as      . This 
choice of estimator gain matrix makes the 2

nd
 term of (16) 

  ̃ [
  

  
]
 

 ̃. Now, consider the fact that   is a strictly 

increasing function of only the end state (      ). This 
makes the    estimation error and output error sign always 
the same throughout the state trajectory. Also, the Jacobian 
  

   
 is always positive in the operating region. The 2

nd
 term 

on the right hand side of (16) can be written as: 

   ̃     ̃  [      
  

   

]
 

 ̃    ̃ 

  

   

 ̃ 

Now,  ̃  ̃    at any point of the state space as the signs of 

 ̃  and  ̃ are always the same and 
  

   
 is always positive (see 

Figure 2). This leads to the fact that   ̃ [
  

  
]
 

 ̃    at any 

point of the state space. Now, consider the derivative of the 
Lyapunov function candidate: 

 ̇    ̃   ̃   ̃     ̃    ̃   [
  

  
]
 

 ̃ 

It is clear that the first two terms are negative definite and the 
3

rd
 term is negative semi-definite. This leads to a negative 

definite  ̇ which is a sufficient condition for asymptotic 
convergence of observer error in the absence of measurement 
noise and parametric uncertainty. Therefore, the observer 
design boils down to finding a positive definite symmetric 
matrix   that satisfies (17). This can be cast as an LMI 
problem using Schur complements: 

[
         

     
]        

(18) 

251



  

Then the observer gain matrix can be obtained as      . 
The tuning mechanisms for this design are the choices of   
and  ; different combination of these will give different rates 
of convergence of the error. 

Systematic Gain Tuning Procedure: 

1. Similar to observer design  I, the choice of   and   has 
to do with feasibility of the LMI problem (18) and the 
desired convergence rate. Choose the structure       
and      . Initialize        . 

2. Start increasing    and    until a feasible LMI solution 
is achieved. 

3. Once the LMI is feasible, record the gain    and repeat 
the procedure with further increasing    and   . 

4. Finally, from the set of feasible gains  , select the one 
that gives the desired error convergence rate. 

 

IV. RESULTS AND DISCUSSIONS 

In this section, the performances of observers from the 
two designs are demonstrated via simulation studies. The 
observers are applied on both the SPM and P2D model of the 
Li-ion battery cell (as the plant). Model parameters of the Li-
ion cell have been taken from [10]. To simulate realistic 
scenarios, noise of zero mean and 5 mV variance has been 
added to the measured voltage from the plant. Also, the 
observer has been initialized with a different value than the 
plant to evaluate its convergence. The input current profile 
used for simulation is: step of 30 A discharge from t = 0-25 
sec, step of 30 A charge from t = 35-60 sec and zero current 
from t=25-35 sec. A 3

rd
 order model (discretizing the particle 

radius into four nodes) has been used in the finite difference 
approximation.  

In observer design I (with constant gain), the observer 

gain vector elements are chosen as         √     where 

√        for some choice of       (     ) with   as 
a high magnitude real number. Similarly, for Observer II 
(with nonlinear feedback), the observer gain matrix is found 
as: 

   [
            
            
            

] 

with choice       (        ),       (        ) 
where   and    as very small magnitude real numbers. At 
first, the observers’ performances have been checked using 
SPM as the plant and utilizing the measurement from the 
same. The performance of the observers is shown in Fig. 3. In 
this illustration bulk Li-ion concentrations from observers 
and SPM have been used for comparison. It is clear from Fig. 
3 that both observers I and II are able to track the states with 
sufficient accuracy. The observation error does not go to zero 
asymptotically because of the presence of noise in this 
illustration. However, the final steady-state error is within 
0.05%, which is deemed satisfactory.   

 

Figure 3. Performance of Observer I and II with SPM as Plant Model 

 

 
Figure 4. Error Convergence for Different Choices of the Tuning Parameter 

M 

Note that the error convergence rates of the two observers 
are different due to the inherent difference in the selection of 
the tuning methods and parameters. The error convergence 
rate can be modified using the individual tuning mechanisms 
for the two observers as discussed in the design section. As 
an illustration, the error convergence rate of observer I is 
shown in Fig. 4 for different choices of the tuning parameter 
M. Similar modification can be done with observer II. 

Next, the observers’ performances have been checked 
using P2D model as the plant and utilizing the output 
measurement from the same. The performance is shown in 
Fig. 5. In this illustration, the averaged bulk concentration 
from the P2D model (i.e, the average of the concentrations at 
all spatial nodes along the length of the P2D cell) is 
compared with observer estimated bulk concentrations. As 
might be expected from the model mismatch between SPM 
and P2D, the estimation error is larger in this case. This is 
due to the fact that the system inherently acts as an integrator 
that causes the states to drift gradually under constant input. 
Owing to this integrator behavior, the mismatch between 
SPM and P2D models causes the error to not stabilize. 
However, the steady-state estimation error remains under 2%, 
which can also be deemed satisfactory. 
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Figure 5. Performance of Observer I and II with P2D as Plant Model 

 

V. CONCLUSION 

In this paper, two nonlinear observer designs have been 

proposed for Li-ion battery cell SOC estimation. Both 

observers are developed based on finite difference ODE 

approximations of the so-called Single Particle Model 

(SPM). Observer I utilizes the Luenberger observer structure 

with constant gain whereas observer II improves the 

structure by weighing the gain with the Jacobian of the 

output with respect to states. Lyapunov’s direct method has 

been applied to convert the estimator design problems into 

solving LMI problems. Tuning mechanisms have been 

added to both designs where the user has the freedom to 

modify some parameters to go for desired estimator error 

convergence rates. Simulation studies show that both 

estimators perform well even in the presence of 

measurement noise. 

The proposed designs did not include parametric 

uncertainty in the model and also ignore the spatial variation 

of the battery variables. As future improvement of this 

current work, we plan to upgrade the observer design for a 

full order P2D model with parametric uncertainty. 
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