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ABSTRACT 
Improvement of the safety and reliability of the Lithium-

ion (Li-ion) battery operation is one of the key tasks for 

advanced Battery Management Systems (BMSs). It is critical 

for BMSs to be able to diagnose battery electrochemical faults 

that can potentially lead to catastrophic failures. In this paper, 

an observer-based fault diagnosis scheme is presented that can 

detect, isolate and estimate some internal electrochemical 

faults. The scheme uses a reduced-order electrochemical-

thermal model for a Li-ion battery cell. The paper first presents 

a modeling framework where the electrochemical faults are 

modeled as parametric faults. Then, multiple sliding mode 

observers are incorporated in the diagnostic scheme. The design 

and selection of the observer gains as well as the convergence 

of the observers are verified theoretically via Lyapunov’s direct 

method. Finally, the performance of the observer-based 

diagnostic scheme is illustrated via simulation studies. 

 

NOMENCLATURE 
𝐴 Current collector area (cm

2
) 

𝑎𝑠
± Specific surface area (cm

2
/ cm

3
) 

𝑐𝑒 Electrolyte phase Li-ion concentration (mol/cm
3
) 

𝑐𝑠
± Solid phase Li-ion concentration (mol/cm

3
) 

𝑐𝑠,𝑒
±  Solid-phase Li-ion surface-concentration (mol/cm

3
) 

𝑐𝑠,𝑚𝑎𝑥
±  Solid-phase Li-ion max. concentration (mol/cm

3
) 

𝐷𝑠
± Diffusion coefficient in solid phase (cm

2
/s) 

𝐷𝑠,𝑟𝑒𝑓
±  Diffusion coefficient at  T𝑟𝑒𝑓 (cm

2
/s) 

𝐸𝐾
± Activation Energy of diffusion coefficient (J/mol) 

𝐸𝐷𝑠
±  Activation Energy of reaction rate constant (J/mol) 

𝐸𝑅 Activation Energy of contact film resistance (J/mol) 

𝐾ℎ Heat transfer coefficient of the cell (W/ K) 

𝐹 Faraday’s constant (C/mol) 

𝐼 Current (A) 

𝐾± Reaction rate constant (cm
2.5

/mol
0.5

/s) 

𝐾𝑟𝑒𝑓
±  Reaction rate constant at T𝑟𝑒𝑓 (cm

2.5
/mol

0.5
/s) 

𝐿± Length of the cell (cm) 

𝑟 Radial coordinate (cm) 

𝑅± Radius of solid active particle (cm) 

�̅� Universal Gas Constant (J/mol-K) 

𝑅𝑓,𝑟𝑒𝑓  Contact resistance (Ω) 

𝑇 Temperature (K) 

𝑇𝑟𝑒𝑓  Reference temperature (K) 

𝑇𝑎𝑚𝑏  Temperature of cooling fluid (K) 

𝑈± Open circuit potential (V) 

𝛼± Charge transfer coefficient  

𝜌 Cell density (g/cm
3
) 

𝑣 Cell volume (cm
3
) 

𝐶𝑝 Specific heat capacity (J/g-K) 

𝜀𝑠
± Active material volume fraction (-) 

Superscript 

± positive/negative electrode 

 

INTRODUCTION 
 Despite beneficial features such as higher power-to-weight 

ratio, low self-discharge, Lithium-ion (Li-ion) batteries still 

suffer from the issues of safety, reliability and longevity. This 

motivates the need for advanced Battery Management Systems 

(BMSs) that improve the battery operation via safe and 

intelligent management. These BMS must have the capability 

to detect different kind of battery failures in order to maintain a 

reliable and safe operation. Various fault mechanisms can 

degrade the battery performance and safety, spanning from 

internal electrochemical failure to sensor and actuator faults. 

Some of these failures may even lead to catastrophic failures. 

Therefore, early and real-time detection of these failures could 

be beneficial in replacing the faulty battery or taking other 

fault-tolerant actions to prevent catastrophic outcomes. 

Motivated by this scenario, we propose a real-time diagnostic 
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scheme in this paper that addresses the diagnosis of 

electrochemical faults in a Li-ion battery cell. 

  In the existing literature, real-time state and parameter 

estimation problems for Li-ion batteries are well studied. Based 

on the kind of model used, these estimation approaches can be 

classified as: 1) Data-driven model-based [1-2], 2) Equivalent 

circuit model-based (ECM) [3-4], and 3) Electrochemical 

model-based [5-12]. The authors of the present paper have 

proposed electrochemical model-based algorithms for state 

and/or parameter estimation of Li-ion batteries [13-16]. 

Other than estimating the states and parameters of the 

nominal battery models, the BMS should also have the 

capabilities for diagnosing different faults in the batteries. 

However, unlike the estimation problem, the real-time fault 

diagnosis problem for Li-ion batteries has received less 

emphasis in the current literature. In [17][18], a review of Li-

ion battery failure mechanisms was presented. The diagnostics 

related challenges for Li-ion batteries were described in [19]. In 

[20], a diagnostic scheme was presented for sensor and 

actuation faults via a combination of open-loop models and 

sliding mode observers. In [21], an algorithm was presented 

that detects over-charge and over-discharge faults using 

Kalman filter based multiple-model adaptive estimation. 

Another algorithm for detecting and predicting terminal voltage 

collapses was presented in [22] that uses a universal adaptive 

stabilization technique. In [23], an observer-based scheme was 

proposed for fault isolation and estimation in a faulty cell in a 

battery string. In [24], sensor fault diagnosis algorithms are 

presented for a battery pack. In [25], structural analysis and 

sequential residual generation technique was presented for fault 

diagnosis of Li-ion batteries. In [26], an electrochemical model-

based diagnostic algorithm was presented for Li-ion plating 

detection. A side reaction current density estimation algorithm 

was presented based on retrospective cost subsystem 

identification in [27]. The authors of the present paper have 

also proposed a sliding-mode observer based sensor fault 

detection and estimation strategy in [28]. Some data-driven 

methods are presented for battery diagnostics in [29-31]. 

However, the main drawbacks for data-driven approaches are 

the requirement of extensive data that captures various fault 

scenarios and lack of physical meaning of the model variables. 

In [32], a fuzzy-logic based scheme that uses an 

electrochemical model was presented for detecting battery 

faults such as over-charge, over-discharge and degradation. 

However, most of the afore-mentioned diagnostic schemes 

have one or more of the following issues: 1) focused on sensor 

faults alone, 2) concentrated on one particular fault, 3) rely on 

equivalent circuit model that has limited capabilities to capture 

electrochemical faults. Moreover, most of the approaches do 

not use electrochemical models, which are arguably more 

accurate than others in capturing internal electrochemical 

phenomena [33]. Although an electrochemical model was used 

in [26], [27], they concentrate on very specific fault 

mechanisms. The approach in [32] detects battery degradation 

in general but does not isolate or estimate specific 

electrochemical faults. 

In this paper, we contribute to this area of research by 

proposing a coupled electrochemical-thermal model-based 

algorithm that can potentially diagnose various electrochemical 

faults. Specifically, in our approach, we take into account 

various electrochemical faults and propose 1) a modeling 

framework for them based on existing reduced-order 

electrochemical-thermal models [7], [8], and, 2) a scheme for 

detecting, and then isolating specific types of fault, and also 

providing an estimate of the fault. In our modeling framework, 

various electrochemical faults are modeled as parametric faults 

in the system. Few estimation approaches exist in the literature 

that estimate some electrochemical parameters in order to track 

battery ageing under the assumption that those parameters 

change in a much slower time-scale. Here we consider 

parametric deviations from a fault diagnosis perspective, which 

allows capturing the fast time-scale battery internal faults in 

addition to the slow time-scale ageing effect. In our diagnostic 

scheme, we design an observer-based algorithm that uses a set 

of sliding mode observers to detect, isolate and estimate various 

electrochemical faults. We also provide an analytical proof of 

the convergence of the overall observer-based scheme via 

Lyapunov’s stability analysis. Sliding mode methodology [34] 

is chosen for the observer design due to the possibility to 

reconstruct the faults via equivalent output error injection, 

which is a filtered version of the switching feedback term in the 

observer [35]. 

The rest of the paper is organized as follows. The next 

section discusses the electrochemical-thermal model of Li-ion 

cell along with the fault-modeling framework. Then, a detailed 

description of the proposed fault diagnosis scheme is provided. 

This is followed by simulation results that illustrate the 

performance of the proposed scheme and concluding remarks. 

SYSTEM MODELING  
Reduced Order Electrochemical-thermal Model of Li-ion Cell 

In this section, we will discuss an existing reduced order 

nominal (non-faulty) electrochemical-thermal model of Li-ion 

cell known as the Single Particle Model (SPM) [7], [8]. The 

SPM comprises of two linear Li-ion diffusion PDEs given by 

(1) and a nonlinear voltage equation given by (2). 

𝜕𝑐𝑠
±

𝜕𝑡
=
𝐷𝑠
±(𝑇)

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑐𝑠
±

𝜕𝑟
) 

𝜕𝑐𝑠
±

𝜕𝑟
|
𝑟=0

= 0,
𝜕𝑐𝑠

±

𝜕𝑟
|
𝑟=𝑅±

=
±𝐼

𝑎𝑠
±𝐹𝐷𝑠

±(𝑇)𝐴𝐿±
 

 

 

(1) 

𝑉

=
�̅�𝑇

𝛼+𝐹
𝑠𝑖𝑛ℎ−1

(

 
𝐼

2𝑎𝑠
+𝐴𝐿+𝐾+(𝑇) √𝑐𝑒𝑐𝑠,𝑒

+ (𝑐𝑠,𝑚𝑎𝑥
+ − 𝑐𝑠,𝑒

+ )
)

 

−
�̅�𝑇

𝛼−𝐹
𝑠𝑖𝑛ℎ−1

(

 
𝐼

2𝑎𝑠
−𝐴𝐿−𝐾−(𝑇) √𝑐𝑒𝑐𝑠,𝑒

− (𝑐𝑠,𝑚𝑎𝑥
− − 𝑐𝑠,𝑒

− )
)

 

+ 𝑈+(𝑐𝑠,𝑒
+ , 𝑇) − 𝑈−(𝑐𝑠,𝑒

− , 𝑇) − 𝑅𝑓(𝑇)𝐼 
(2) 
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where 𝑈± are the thermodynamic potentials of the electrodes, 

𝑐𝑠
± is the Li-ion concentration of the electrodes, 𝑎𝑠

± = 3/𝑅±  is 

the active surface area, 𝑉 is the voltage and 𝐼 is the current. 

Rest of the variables is defined in the nomenclature section. 

Next, the following lumped thermal dynamics is adopted [36]: 

𝜌𝑣𝐶𝑝
𝑑𝑇

𝑑𝑡
= 𝐼 (𝑈+(𝑐𝑠,𝑒

+ , 𝑇) − 𝑈−(𝑐𝑠,𝑒
− , 𝑇) − 𝑉

− 𝑇(
𝜕𝑈+

𝜕𝑇
−
𝜕𝑈−

𝜕𝑇
)) − 𝐾ℎ(𝑇 − 𝑇𝑎𝑚𝑏) 

 

 

(3) 

where 𝑇 is the lumped averaged temperature of the cell and 

𝜕𝑈±/𝜕𝑇 are the changes in thermodynamic potentials due to 

temperature. Some electrochemical parameters possess 

Arrhenius’ type dependence on temperature. For example, solid 

phase diffusion coefficients (𝐷𝑠
±), the reaction rate constants 

(𝐾±) and film resistance (𝑅𝑓): 

𝐾±(𝑇) = 𝐾𝑟𝑒𝑓
± exp(

𝐸𝐾
±

�̅�
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) 

𝐷𝑠
±(𝑇) = 𝐷𝑠,𝑟𝑒𝑓

± exp(
𝐸𝐷𝑠
±

�̅�
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) 

𝑅𝑓(𝑇) = 𝑅𝑓,𝑟𝑒𝑓exp(
𝐸𝑅

�̅�
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) 

 

 

(4) 

with 𝑇𝑟𝑒𝑓  as temperature reference, 𝐾𝑟𝑒𝑓
± , 𝐷𝑠,𝑟𝑒𝑓

±  and 𝑅𝑓,𝑟𝑒𝑓  are 

reference values at the reference temperature. Further, the 

following approximation of the thermodynamic potential 

expression is adopted [36]: 

𝑈±(𝑐𝑠,𝑒
± , 𝑇) ≈ 𝑈±(𝑐𝑠,𝑒

± , 𝑇𝑟𝑒𝑓) +
𝜕𝑈±

𝜕𝑇
(𝑇 − 𝑇𝑟𝑒𝑓) (5) 

Note: In the existing literature, some modeling approaches exist 

that extend the conventional SPM and the averaged thermal 

model, e.g. [37] and [38]. However, the present paper only 

illustrates the electrochemical fault diagnosis approach using 

the conventional SPM and lumped averaged thermal model. 

Extension of the approach using the enhanced models can be 

considered a future work of this study.  

 
Figure 1: Illustration of SPM with Discretized Nodes 

The SPM states are weakly observable from the measured 

voltage [8]. To get an observable model, the positive electrode 

concentration is approximated as an algebraic function of the 

negative electrode concentration based on the conservation of 

Li-ions [9]. With this step, we now have one PDE describing 

Li-ion diffusion dynamics in the negative electrode and a 

nonlinear output voltage function. Next, the PDE is discretized 

by defining a set of nodes [𝑐𝑠0, 𝑐𝑠1, … 𝑐𝑠𝑀] along the radius of 

the negative electrode particle as shown in Fig. 1. Then the 

spatial derivatives are approximated via the central in space 

finite difference method leading to a set of ODEs given in (6).  
�̇�𝑠0 = −3𝑎𝑐𝑠0 + 3𝑎𝑐𝑠1 

�̇�𝑠𝑚 = (1 −
1

𝑚
)𝑎𝑐𝑠(𝑚−1) − 2𝑎𝑐𝑠𝑚 + (1 +

1

𝑚
)𝑎𝑐𝑠(𝑚+1) 

�̇�𝑠𝑀 = (1 −
1

𝑀
)𝑎𝑐𝑠(𝑀−1) − (1 −

1

𝑀
)𝑎𝑐𝑠𝑀 − (1 +

1

𝑀
)𝑏𝐼 

 

 

(6) 

with 𝑚 = 1,… , (𝑀 − 1), discretization step Δ = 𝑅−/𝑀, 

𝑎 = 𝐷𝑠
−/Δ2, 𝑏 = 1/𝑎𝑠

−𝐹Δ𝐴𝐿−. The output voltage expression 

and thermal dynamics can be re-written from (2) and (3) 

respectively, by substituting 𝑐𝑠,𝑒
− = 𝑐𝑠𝑀 and 𝑐𝑠,𝑒

+ =  𝑘1𝑐𝑠𝑀 + 𝑘2. 
Note that, 𝑘1 and 𝑘2 are constants in the algebraic relationship 

between positive and negative electrode Li-ion concentrations 

that are derived based on conservation of Li-ions in the cell [9].  

State-space Model Formulation  
Considering (6) and (2), the electrochemical state-space 

model for the Li-ion cell can be written as: 

�̇� = 𝑓1(𝑇)𝜃𝐴𝑥 + 𝐵𝑢 
𝑦 = ℎ(𝑥𝑀 , 𝑇) + 𝜂(𝑥𝑀, 𝑇, 𝑢) − 𝑅𝑓,𝑟𝑒𝑓𝑓2(𝑇)𝑢 (7) 

where 𝑥 = [𝑐𝑠1, … , 𝑐𝑠𝑀]
𝑇 ∈ ℝ𝑀 is the state vector describing 

Li-ion concentrations at various nodes, 𝑥𝑀 = 𝑥(𝑀) = 𝑐𝑠𝑀 ∈ ℝ 

is the surface concentration state,  𝐴 ∈ ℝ𝑀×𝑀 is a tri-diagonal 

matrix derived from (6), 𝜃 = 𝐷𝑠,𝑟𝑒𝑓
− /Δ2 ∈ ℝ is the scalar 

parameter related to the diffusion coefficient, 

𝐵 = [0,… ,0, 𝐵𝑀]
𝑇 ∈ ℝ𝑀×1 is a column vector formed from (6) 

where  𝐵𝑀 = 1/𝑎𝑠
−𝐹Δ𝐴𝐿−, 𝑅𝑓,𝑟𝑒𝑓 ∈ ℝ is the reference contact 

resistance, 𝑦 ∈ ℝ is the measured voltage, 𝑢 ∈ ℝ is the input 

current, 𝑓1, 𝑓2: ℝ → ℝ are scalar functions of the temperature 

given by the exponential term in the Arrhenius relations (4), 

ℎ = (𝑈+ − 𝑈−):ℝ2 → ℝ is a scalar function derived from the 

thermodynamic potentials of the electrodes, 𝜂:ℝ3 → ℝ is a 

scalar function derived from the first two hyperbolic sine 

inverse terms in the RHS of (2). Now, we are going to write the 

state equation in (7) in a partitioned form with 𝑥 = [𝑥1 𝑥𝑀]𝑇 

where 𝑥𝑀 ∈ ℝ is the surface concentration state and 𝑥1 =
[𝑐𝑠1, … , 𝑐𝑠(𝑀−1)]

𝑇 ∈ ℝ𝑀−1 is the partial state vector containing 

the concentrations at the rest of the spatial nodes. Based on this, 

the 𝐴 and 𝐵 matrices in (7) can also be written in partitioned 

form as: 𝐴 = [
𝐴11 𝐴12
𝐴21 𝐴22

] where 𝐴11 ∈ ℝ
(𝑀−1)×(𝑀−1), 𝐴12 ∈

ℝ(𝑀−1)×1, 𝐴21 ∈ ℝ
1×(𝑀−1), 𝐴22 ∈ ℝ and 𝐵 = [

𝑂
𝐵𝑀
] where 

𝑂 ∈ ℝ(𝑀−1)×1 is a vector containing zeros and 𝐵𝑀 ∈ ℝ as 

defined above. Therefore, the state equation can be written in 

partitioned form as: 

�̇�1 = 𝑓1(𝑇)𝜃(𝐴11𝑥1 + 𝐴12𝑥𝑀) (8) 

�̇�𝑀 = 𝑓1(𝑇)𝜃(𝐴21𝑥1 + 𝐴22𝑥𝑀) + 𝐵𝑀𝑢 (9) 

𝑦 = ℎ(𝑥𝑀 , 𝑇) + 𝜂(𝑥𝑀, 𝑇, 𝑢) − 𝑅𝑓,𝑟𝑒𝑓𝑓2(𝑇)𝑢 (10) 

This partitioned form will be used for observer design later. 
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Now considering (3), the state-space form of the thermal 

model can be written as: 

𝜌𝑣𝐶𝑝�̇� = −𝐾ℎ(𝑇 − 𝑇𝑎𝑚𝑏) + 𝑢{ℎ(𝑥𝑀 , 𝑇) − 𝑦 − 𝑇ℎ𝑑} (11) 

where ℎ𝑑 = (
𝜕𝑈+

𝜕𝑇
−
𝜕𝑈−

𝜕𝑇
). We shall denote the thermal model 

in (11) as Thermal Model I. From the voltage equation in (10):  

𝑦 = ℎ(𝑥𝑀 , 𝑇) + 𝜂(𝑥𝑀, 𝑇, 𝑢) − 𝑅𝑓,𝑟𝑒𝑓𝑓2(𝑇)𝑢 

⇒ ℎ(𝑥𝑀 , 𝑇) − 𝑦 = −𝜂(𝑥𝑀, 𝑇, 𝑢) + 𝑅𝑓,𝑟𝑒𝑓𝑓2(𝑇)𝑢 (12) 

Using (11) and (12), another formulation of the thermal model 

(Thermal Model II) can be written as: 

𝜌𝑣𝐶𝑝�̇� = −𝐾ℎ(𝑇 − 𝑇𝑎𝑚𝑏) 

+𝑢{−𝜂(𝑥𝑀 , 𝑇, 𝑢) + 𝑅𝑓,𝑟𝑒𝑓𝑓2(𝑇)𝑢 − 𝑇ℎ𝑑} 
(13) 

Note that the two formulations are equivalent and capture the 

same thermal dynamics of the cell. Note that the difference 

between these formulations is that (11) contains the open-

circuit thermodynamic potential (ℎ(𝑥𝑀 , 𝑇)) information and 

(13) contains the contact resistance (𝑅𝑓,𝑟𝑒𝑓) information. These 

two formulations will be used later in the observer design 

section. 

 

Modeling of Electrochemical Faults 

A partial list of different electrochemical faults is discussed in 

[19], some of which are: Electrical contact loss, damage in 

current collector, Solid-Electrolyte Interface (SEI) growth, 

structural fracture of the electrodes, Lithium plating, negative 

electrode diffusion coefficient decrease, change in electrode 

porosity, particle size change etc. As can be seen from the 

above list, the electrochemical faults follow a wide spectrum of 

physical phenomena and it is very difficult to capture the effect 

of all of them in a single modeling framework. Moreover, for 

real-time implementable model-based diagnostic schemes, 

there is a trade-off between the acceptable complexity of the 

model and its predictive capability. In this paper, we attempt to 

address this trade-off by proposing a modeling strategy for 

electrochemical faults with respect to already existing, reduced-

order and real-time suitable SPM extended with the lumped 

thermal models as discussed in the previous section. 

 The modeling strategy is based on the 

parametric/multiplicative fault models commonly used in the 

fault diagnosis literature [39]. The parametric/multiplicative 

fault modeling is based on the observation that often the 

occurrence of a fault manifests itself as a change in the values 

of one or more parameters of the system and so the fault is best 

modeled as deviation in one or more of these parameters. In 

this paper, we adopt a similar approach to describe the 

electrochemical faults as deviations in the parameters of the 

SPM plus thermal model. In line with this discussion, some of 

the afore-mentioned electrochemical faults and their effects on 

the different SPM parameters in (8)-(10), are given as :i) The 

fault {Decrease in diffusion coefficient} affects the parameter 

𝜃. ii) The faults {Change in particle size, change in porosity 

etc.} affect the parameter 𝐵𝑀. Note that, 𝜃 is also affected by 

change in SPM model particle size 𝑅−, however, the effect of 

this may be minimized by a choice of finer discretization 

(higher value of 𝑀). As will be shown later, this is required for 

the isolation of faults in 𝜃 and 𝐵𝑀. iii) The faults {electrical 

contact loss, damage in current collector, SEI growth etc.} 

affect the parameter 𝑅𝑓,𝑟𝑒𝑓 . 

These modeled faults can be incorporated in the 

electrochemical and thermal models as follows.  

Electrochemical Model: 

�̇�1 = 𝑓1(𝑇)(𝜃 + 𝜃𝐹)(𝐴11𝑥1 + 𝐴12𝑥𝑀) (14) 

�̇�𝑀 = 𝑓1(𝑇)(𝜃 + 𝜃𝐹)(𝐴21𝑥1 + 𝐴22𝑥𝑀)
+ (𝐵𝑀 + 𝐵𝐹)𝑢 (15) 

𝑦 = ℎ(𝑥𝑀 , 𝑇) + 𝜂(𝑥𝑀, 𝑇, 𝑢) − (𝑅𝑓,𝑟𝑒𝑓 + 𝑅𝐹)𝑓2(𝑇)𝑢 (16) 

Thermal Model I: 

𝜌𝑣𝐶𝑝�̇� = −𝐾ℎ(𝑇 − 𝑇𝑎𝑚𝑏) + 𝑢{ℎ(𝑥𝑀 , 𝑇) − 𝑦 − 𝑇ℎ𝑑} (17) 

Thermal Model II: 

𝜌𝑣𝐶𝑝�̇� = −𝐾ℎ(𝑇 − 𝑇𝑎𝑚𝑏) 

+𝑢{−𝜂(𝑥𝑀 , 𝑇, 𝑢) + (𝑅𝑓,𝑟𝑒𝑓 + 𝑅𝐹)𝑓2(𝑇)𝑢 − 𝑇ℎ𝑑} 
(18) 

where 𝜃𝐹, 𝐵𝐹  and 𝑅𝐹 are the parametric/multiplicative faults. 

Note that with this modeling of faults, we will only be able to 

diagnose 𝜃𝐹, 𝐵𝐹  and 𝑅𝐹, not the exact phenomenon behind 

them such as change in particle size or change in porosity. To 

determine the exact electrochemical phenomenon, offline 

electrochemical in-situ studies can be conducted [40].  

In the existing fault diagnosis literature, faults are 

classified based on their frequency domain characteristics: 1) 

abrupt or jump-type faults, that represent sudden changes and 

modelled as step functions, 2) incipient or drift-like faults, that 

represent slow changes and can be modelled as ramp functions 

[39]. In the context to battery electrochemical faults, we can 

use this classification to separate two different types of faults: 

1) aging-related faults can be considered as incipient faults 

which are generally much slower in nature than the inherent 

system dynamics, and 2) faults that are not related to 

cycle/calendar aging but can occur due to some sudden 

electrochemical and/or thermal reactions inside the cell owing 

to abnormal operating conditions or abuse. This type of failures 

can be considered as abrupt faults. Note that most 

electrochemical SOH estimation algorithms in the existing 

literature are designed under the assumption that the parameters 

are slowly-varying and hence may not be readily applicable for 

abrupt fault detection. However, in the proposed diagnostic 

scheme below, we do not impose any restrictions on the type of 

fault and hence, can diagnose both types. 

FAULT DIAGNOSIS SCHEME 
Fault Diagnosis Problem 

The fault diagnosis problem addressed here is to detect, 

and if possible isolate and estimate the faults  𝜃𝐹, 𝐵𝐹  and 𝑅𝐹. 

 

Assumptions and Observations 

We make the following assumptions and observations of 

the system (14)-(18) which will be exploited later in the 

diagnostic scheme: 
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Assumption I: The available sensor measurements (voltage, 

current and temperature) are fault free. 

Assumption II: No multiple faults can occur at the same time 

which means only one of the faults 𝜃𝐹, 𝐵𝐹  and 𝑅𝐹 can occur at 

a time. This assumption enables the isolation of different faults. 

Assumption III: The term ℎ𝑑 = (
𝜕𝑈+

𝜕𝑇
−
𝜕𝑈−

𝜕𝑇
) is constant and 

known with sufficient accuracy. Although, ℎ𝑑 is generally a 

function of the surface concentration, the variation in the 

amplitude of ℎ𝑑is much smaller [36]. In this study, we ignore 

this small variation and treat ℎ𝑑 as a known constant. As will be 

seen later, this assumption will facilitate the observer design. 

Observation I: The function ℎ is a strictly increasing function 

of the surface concentration state 𝑥𝑀 for any given temperature. 

Based on this strictly increasing property, given any 

temperature 𝑇 = 𝑇∗, for two points, 𝑥𝑀
(1)

 and 𝑥𝑀
(2)

 in 𝑥𝑀-space, 

and corresponding points ℎ(1)(𝑥𝑀
(1)
, 𝑇∗) and ℎ(2)(𝑥𝑀

(2)
, 𝑇∗),  we 

can write: 

𝑠𝑔𝑛 (ℎ(1)(𝑥𝑀
(1)
, 𝑇∗) − ℎ(2)(𝑥𝑀

(2)
, 𝑇∗)) = 𝑠𝑔𝑛(𝑥𝑀

(1)
− 𝑥𝑀

(2)
) 

 

Diagnostics Scheme 

Figure 2 shows the diagnostic scheme. The scheme 

consists of four observers working in a cascaded manner: 

Observer I: Observer I is based on Thermal Model I (17). It 

receives the measurements of current, voltage and temperature 

and accurately estimates the open-circuit thermodynamic 

potential ℎ(𝑥𝑀, 𝑇) even in the presence of the afore-mentioned 

parametric faults.  Its equations are: 

𝜌𝑣𝐶𝑝�̇̂�1 = −𝐾ℎ(�̂�1 − 𝑇𝑎𝑚𝑏) + 𝑢{−𝑦 − �̂�1ℎ𝑑} + 𝐿1𝑠𝑔𝑛(�̃�1) 

ℎ̂(𝑥𝑀 , 𝑇) = 𝜗1/𝑢 (19) 

where 𝐿1 is the observer gain to be designed, �̂�1 is the estimated 

temperature, �̃�1 = 𝑇 − �̂�1 and 𝜗1 is a continuous approximation 

(filtered version) of the switching term 𝐿1𝑠𝑔𝑛(�̃�1). 

Observer II: Observer II is based on surface concentration 

dynamics (15). This observer receives the measured current and 

estimated thermodynamic potential from Observer I, and in turn 

accurately estimates the surface concentration even in the 

presence of the parametric faults and unknown 𝑥1. 

�̇̂̅�𝑀 = 𝑓1(𝑇)𝜃(𝐴22�̂̅�𝑀) + 𝐵𝑀𝑢

+ 𝐿2𝑠𝑔𝑛(𝜗1/𝑢 − ℎ(�̂̅�𝑀 , 𝑇)) 
(20) 

where 𝐿2 is the observer gain to be designed, �̂̅�𝑀 is the 

estimated surface concentration. 

Observer III: Observer III is based on the full state Li-ion 

concentration dynamics given in (14)-(15). This observer 

receives the measured current and estimated surface 

concentration from the Observer II, and estimate 𝜗3. This 𝜗3 is 

then used to estimate the faults 𝜃𝐹 and 𝐵𝐹 . 

�̇̂�1 = 𝑓1(𝑇)𝜃{𝐴11�̂�1 + 𝐴12�̂�𝑀} + 𝐿31�̃�𝑀  

�̇̂�𝑀 = 𝑓1(𝑇)𝜃{𝐴21�̂�1 + 𝐴22�̂�𝑀} + 𝐵𝑀𝑢 + 𝐿32�̃�𝑀 + 𝐿33𝑠𝑔𝑛(�̃�𝑀) 
𝑦3 = 𝜗3 (21) 

where 𝐿31, 𝐿32 and 𝐿33 are the observer gains to be designed, 

�̂�1and �̂�𝑀 are the estimated quantities, �̃�𝑀 = �̂̅�𝑀 − �̂�𝑀 where 

�̂̅�𝑀 is from Observer II, 𝑦3 = 𝜗3 is the output of the Observer 

III which is a continuous approximation (filtered version) of the 

switching term 𝐿33𝑠𝑔𝑛(�̃�𝑀). 
Observer IV: Observer IV is based on Thermal Model II (18). 

It receives the measured current, temperature and estimated 

surface concentration from Observer II, and in turn estimates 

the fault 𝑅𝐹. 

𝜌𝑣𝐶𝑝�̇̂�4 = −𝐾ℎ(�̂�4 − 𝑇𝑎𝑚𝑏) 

+𝑢{−𝜂(�̂�𝑀 , 𝑇, 𝑢) + (𝑅𝑓,𝑟𝑒𝑓)𝑓2(𝑇)𝑢 − 𝑇ℎ𝑑} + 𝐿4𝑠𝑔𝑛(�̃�4) 

�̂�𝐹 = 𝜗4/(𝑓2(𝑇)𝑢
2) (22) 

where 𝐿4 is the observer gain to be designed, �̂�4 is the estimated 

temperature, �̃�4 = 𝑇 − �̂�4 and 𝜗4 is a continuous approximation 

(filtered version) of the switching term 𝐿4𝑠𝑔𝑛( �̃�4). 
Note: The observers are designed based on sliding mode 

Figure 2: The Fault Diagnosis Scheme 
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method. In the design of the sliding mode observer, a sliding 

surface is defined the ‘sign’ of which is used as the feedback 

term in the observer [34]. In this paper, the sliding surface is 

chosen as the origin of the estimation error space for the 

respective observer. One of the characteristics of sliding mode 

observers is that for a sufficiently high gain, the convergence to 

the sliding surface can be guaranteed even in the presence of 

internal faults. Moreover, after the convergence at the sliding 

surface, the fault information shows up in the equivalent output 

error, which is the continuous approximation (filtered version) 

of the switching feedback term in the observer [35]. 

CONVERGENCE ANALYSIS OF THE OBSERVERS 
Before analyzing the convergence of the observers, we 

define certain quantities that will be used for designing the 

observer gains. The quantities |𝑢|𝑚𝑎𝑥, |𝑢2|𝑚𝑎𝑥 are the 

maximum possible input current and its square and can be 

determined a priori based on the manufacturer specs. The 

quantities |𝑥𝑀|𝑚𝑎𝑥 , |𝐴21𝑥1|𝑚𝑎𝑥 depend on the maximum 

possible Li-ion concentration inside the battery electrode. These 

values can also be determined a priori based on the particular 

electrode chemistry. The values |ℎ(𝑥𝑀 , 𝑇)|𝑚𝑎𝑥 , |𝑓1(𝑇)|𝑚𝑎𝑥, 
|𝑓2(𝑇)|𝑚𝑎𝑥  are the maximum outputs of the corresponding 

functions. These values can be predetermined a priori by 

evaluating the functions in the possible temperature and surface 

concentration ranges from electrode chemistries and reasonable 

operating conditions. The values |�̃�1|𝑚𝑎𝑥, |�̃�4|𝑚𝑎𝑥, |𝑒|𝑚𝑎𝑥 ≜

(|𝑥𝑀 − �̂̅�𝑀|𝑚𝑎𝑥), |𝐴21�̃�1|𝑚𝑎𝑥  and |�̃�𝑀|𝑚𝑎𝑥  are the maximum 

estimation errors ∀𝑡 for which the observers converge. 

Essentially these variables define the region of convergence in 

the estimation error spaces. Note that, these values are selected 

by designers and can be chosen arbitrarily large. The values 

|𝜃𝐹|𝑚𝑎𝑥 and |𝐵𝐹|𝑚𝑎𝑥, |𝑅𝐹|𝑚𝑎𝑥  are the maximum possible 

amplitude of faults for which the observers will converge. 

Essentially these variables determine the region in the fault 

space in which the diagnostic scheme performs satisfactorily. 

These values are also selected by designers. 

Note: The convergence analysis of the observers is done 

without considering modeling and measurement uncertainties. 

However, in the simulation studies, we consider these effects 

while verifying the effectiveness of the scheme. 

 

Convergence Analysis of Observer I 

The goal of Observer I is to estimate the thermodynamic 

potential function ℎ(𝑥𝑀 , 𝑇) accurately even in the presence of 

faults. Subtracting (19) from (17), the error dynamics of the 

Observer I can be written as: 

𝜌𝑣𝐶𝑝�̇̃�1 = −𝐾ℎ�̃�1 − 𝑢�̃�1ℎ𝑑 + 𝑢ℎ(𝑥𝑀, 𝑇) − 𝐿1𝑠𝑔𝑛(�̃�1)       (23) 

Note that, the sliding surface in this case is 𝑆1 = �̃�1 = 0 as this 

is inside the ‘sign’ term. The reachability to this sliding surface 

𝑆1 can be analyzed using the Lyapunov function candidate 

𝑉1 = 0.5𝜌𝑣𝐶𝑝𝑆1
2. Its derivative is: 

�̇�1 = 𝜌𝑣𝐶𝑝𝑆1�̇�1 = 𝜌𝑣𝐶𝑝�̃�1�̇̃�1 

⇒ �̇�1 = �̃�1{−𝐾ℎ�̃�1 − 𝑢�̃�1ℎ𝑑 + 𝑢ℎ(𝑥𝑀 , 𝑇) − 𝐿1𝑠𝑔𝑛(�̃�1)} 

⇒ �̇�1 = −𝐾ℎ�̃�1
2 − 𝑢�̃�1

2ℎ𝑑 + �̃�1𝑢ℎ(𝑥𝑀, 𝑇) − 𝐿1|�̃�1| (24) 

⇒ �̇�1 ≤ −𝑢�̃�1
2ℎ𝑑 + �̃�1𝑢ℎ(𝑥𝑀 , 𝑇) − 𝐿1|�̃�1|, as 𝐾ℎ > 0  (25) 

Now applying the fact 𝑎𝑏𝑐 ≤ |𝑎||𝑏||𝑐| on the first two terms on 

the RHS of (25), 

�̇�1 ≤ |𝑢||�̃�1|
2
|ℎ𝑑| + |�̃�1||𝑢||ℎ(𝑥𝑀, 𝑇)| − 𝐿1|�̃�1| 

⇒ �̇�1 ≤ |�̃�1|{|𝑢||�̃�1||ℎ𝑑| + |𝑢||ℎ(𝑥𝑀 , 𝑇)| − 𝐿1} (26) 

From (26), we can conclude that for a sufficiently high positive 

gain 𝐿1 which satisfies the condition 

𝐿1 > |𝑢|𝑚𝑎𝑥|�̃�1|𝑚𝑎𝑥
|ℎ𝑑| + |𝑢|𝑚𝑎𝑥|ℎ(𝑥𝑀 , 𝑇)|𝑚𝑎𝑥 , ∀𝑡,  �̇�1 < 0 

and can be written as: 

�̇�1 ≤ −�̅�1√𝑉1 where �̅�1 = √2/𝜌𝑣𝐶𝑝{𝐿1 

−(|𝑢|𝑚𝑎𝑥|�̃�1|𝑚𝑎𝑥
|ℎ𝑑| + |𝑢|𝑚𝑎𝑥|ℎ(𝑥𝑀 , 𝑇)|𝑚𝑎𝑥)} > 0 

⇒ 𝑉1(𝑡) ≤ {−
�̅�1
2
𝑡 + √𝑉1(𝑡0)}

2

 (27) 

From the above analysis, it can be seen that 𝑉1 goes to zero and 

the sliding surface 𝑆1 = �̃�1 = 0 is reached in finite time defined 

by 𝑡1 ≤ 2√𝑉1(𝑡0)/�̅�1. Considering that we have 𝑆1 = �̃�1 = 0 

and �̇�1 = �̇̃�1 = 0 on the sliding surface [34], we can write from 

(23) that: 

𝜗1 = 𝑢ℎ(𝑥𝑀 , 𝑇) (28) 

As mentioned before, 𝜗1is the filtered version of the switching 

term and can be extracted from the observer by passing 

𝐿1𝑠𝑔𝑛(�̃�1) through a low-pass filter [34]. Note that, from (28) 

the thermodynamic potential can be reconstructed as: 

ℎ̂(𝑥𝑀 , 𝑇) = 𝜗1/𝑢 (29) 

 

Convergence Analysis of Observer II 

The goal of Observer II is to estimate surface concentration 

state 𝑥𝑀 accurately even in presence of faults and unknown 𝑥1. 

Subtracting (20) from (15), the error dynamics of the Observer 

II in the presence of faults can be written as: 

�̇� = 𝑓1(𝑇)(𝜃 + 𝜃𝐹)𝐴21𝑥1 + 𝑓1(𝑇)𝜃𝐹𝐴22𝑥𝑀 

+𝑓1(𝑇)𝜃𝐴22𝑒 + 𝐵𝐹𝑢 − 𝐿2𝑠𝑔𝑛 (
𝜗1
𝑢
− ℎ(�̂̅�𝑀, 𝑇)) (30) 

where 𝑒 = 𝑥𝑀 − �̂̅�𝑀. Note that, from (29) after the convergence 

of Observer I we have 𝜗1/𝑢 = ℎ(𝑥𝑀 , 𝑇). Therefore, the error 

dynamics can be written as: 

�̇� = 𝑓1(𝑇)(𝜃 + 𝜃𝐹)𝐴21𝑥1 + 𝑓1(𝑇)𝜃𝐹𝐴22𝑥𝑀 
+𝑓1(𝑇)𝜃𝐴22𝑒 + 𝐵𝐹𝑢

− 𝐿2𝑠𝑔𝑛(ℎ(𝑥𝑀, 𝑇) − ℎ(�̂̅�𝑀 , 𝑇)) 
(31) 

From Observation I, we can write that: 

𝑠𝑔𝑛(ℎ(𝑥𝑀 , 𝑇) − ℎ(�̂̅�𝑀, 𝑇)) = 𝑠𝑔𝑛(𝑥𝑀 − �̂̅�𝑀) (32) 

Considering (32), we can re-write (31) as: 

�̇� = 𝑓1(𝑇)(𝜃 + 𝜃𝐹)𝐴21𝑥1 + 𝑓1(𝑇)𝜃𝐹𝐴22𝑥𝑀 
+𝑓1(𝑇)𝜃𝐴22𝑒 + 𝐵𝐹𝑢 − 𝐿2𝑠𝑔𝑛(𝑒) 

(33) 
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Now, the error dynamics can be analyzed using the Lyapunov 

function candidate 𝑉2 = 0.5𝑒
2. The derivative of the Lyapunov 

function candidate can be written as: 

�̇�2 = 𝑒�̇� = 𝑒{𝑓1(𝑇)(𝜃 + 𝜃𝐹)𝐴21𝑥1 + 𝑓1(𝑇)𝜃𝐹𝐴22𝑥𝑀  
+𝑓1(𝑇)𝜃𝐴22𝑒 + 𝐵𝐹𝑢 − 𝐿2𝑠𝑔𝑛(𝑒) 
⇒ �̇�2 = 𝑒{𝑓1(𝑇)(𝜃 + 𝜃𝐹)𝐴21𝑥1 + 𝑓1(𝑇)𝜃𝐹𝐴22𝑥𝑀 

+𝑓1(𝑇)𝜃𝐴22𝑒 + 𝐵𝐹𝑢} − 𝐿2𝑒𝑠𝑔𝑛(𝑒) 
(34) 

Applying the fact 𝑎𝑏𝑐 ≤ |𝑎||𝑏||𝑐| in first term of (34), the 

following can be written: 

�̇�2 ≤ |𝑒|𝐹 − 𝐿2|𝑒| 
where 𝐹 = {|𝑓1(𝑇)|(|𝜃| + |𝜃𝐹|)|𝐴21𝑥1| +
|𝜃𝐹||𝐴22||𝑥𝑀| + |𝜃||𝐴22||𝑒| + |𝐵𝐹|𝑢} 

(35) 

From (35), we can conclude that for a sufficiently high positive 

gain 𝐿2 which satisfies the condition: 

 𝐿2 > 𝐹𝑚𝑎𝑥 ≜ |𝑓1(𝑇)|𝑚𝑎𝑥(|𝜃| + |𝜃𝐹|𝑚𝑎𝑥)|𝐴21𝑥1|𝑚𝑎𝑥  
+|𝜃𝐹|𝑚𝑎𝑥|𝐴22||𝑥𝑀|𝑚𝑎𝑥 + |𝜃||𝐴22||𝑒|𝑚𝑎𝑥 + |𝐵𝐹|𝑚𝑎𝑥𝑢𝑚𝑎𝑥 , ∀𝑡,  
�̇�2 < 0 and can be written as: 

�̇�2 ≤ −�̅�2√𝑉2 where 

 �̅�2 = 𝐿2 − 𝐹𝑚𝑎𝑥 > 0 

⇒ 𝑉2(𝑡) ≤ {−
�̅�2
2
𝑡 + √𝑉2(𝑡0)}

2

 (36) 

From the above analysis, it can be seen that 𝑉2 and therefore 𝑒 

goes to zero in finite time given by 𝑡2 ≤ 2√𝑉2(𝑡0)/�̅�2. 

Therefore, �̂̅�𝑀 → 𝑥𝑀 in finite time. 

 

Convergence Analysis of Observer III 

The goal of Observer III is to estimate the faults 𝜃𝐹 and 𝐵𝐹 . We 

analyze Observer III under the assumption that Observer II is 

already converged and provides an accurate estimate of the 

surface concentration to Observer III. Subtracting (21) from 

(14) and (15), the error dynamics of Observer I in the presence 

of faults can be written as: 

�̇̃�1 = 𝑓1(𝑇){𝜃(𝐴11�̃�1 + 𝐴12�̃�𝑀) + 𝜃𝐹(𝐴11𝑥1 + 𝐴12𝑥𝑀)}
− 𝐿31�̃�𝑀  

�̇̃�𝑀 = 𝑓1(𝑇){𝜃(𝐴21�̃�1 + 𝐴22�̃�𝑀) + 𝜃𝐹(𝐴21𝑥1 + 𝐴22𝑥𝑀)} 
+𝐵𝐹𝑢 − 𝐿32�̃�𝑀 − 𝐿33𝑠𝑔𝑛(�̃�𝑀)           (37) 
where �̃�𝑀 = 𝑥𝑀 − �̂�𝑀 and 𝑥𝑀 is available from Observer II. We 

can analyze the second equation of (37) by choosing a 

Lyapunov function candidate 𝑉3 = 0.5�̃�𝑀
2 . Then: 

�̇�3 = �̃�𝑀 �̇̃�𝑀 = �̃�𝑀𝑓1(𝑇)𝜃(𝐴21�̃�1 + 𝐴22�̃�𝑀) + 𝐵𝐹𝑢�̃�𝑀  
𝑓1(𝑇)𝜃𝐹(𝐴21𝑥1 + 𝐴22𝑥𝑀) − 𝐿32�̃�𝑀

2 − 𝐿33|�̃�𝑀| 
⇒ �̇�3 ≤ |�̃�𝑀|{|𝑓1(𝑇)||𝜃|(|𝐴21�̃�1| + |𝐴22||�̃�𝑀|) 

+|𝑓1(𝑇)||𝜃𝐹|(|𝐴21𝑥1| + |𝐴22||𝑥𝑀|) + |𝐵𝐹||𝑢|} − 𝐿33|�̃�𝑀| −
   𝐿32�̃�𝑀

2              (38) 

From (38), we can conclude that for a sufficiently high positive 

gain 𝐿33 which satisfies the condition:  

𝐿33 > 𝐽𝑚𝑎𝑥 ≜ |𝑓1(𝑇)|𝑚𝑎𝑥|𝜃|(|𝐴21�̃�1|𝑚𝑎𝑥 + |𝐴22||�̃�𝑀|𝑚𝑎𝑥) +
|𝑓1(𝑇)|𝑚𝑎𝑥|𝜃𝐹|𝑚𝑎𝑥(|𝐴21𝑥1|𝑚𝑎𝑥 + |𝐴22||𝑥𝑀|𝑚𝑎𝑥) +
|𝐵𝐹|𝑚𝑎𝑥|𝑢|𝑚𝑎𝑥 , ∀𝑡,  �̇�3 < 0. 

The gains 𝐿31 and 𝐿32 can be tuned to make sure that under no 

fault condition (𝐵𝐹 , 𝜃𝐹 = 0), the error �̃�1 → 0 with a desired 

fast convergence rate. Therefore, �̇�3 can be written as: 

�̇�3 ≤ −�̅�3√𝑉3 where �̅�3 = 𝐿33 − 𝐽𝑚𝑎𝑥 > 0 

⇒ 𝑉3(𝑡) ≤ {−
�̅�3
2
𝑡 + √𝑉3(𝑡0)}

2

 (39) 

From the above analysis, it can be seen that 𝑉3 and therefore �̃�𝑀 

goes to zero in finite time defined by 𝑡3 ≤ 2√𝑉3(𝑡0)/�̅�3. 

Therefore, we have �̃�𝑀 = 0 and �̇̃�𝑀 = 0 after this finite time. 

Considering these, (37) can be written as: 

�̇̃�1 = 𝑓1(𝑇)𝜃(𝐴11�̃�1) + 𝑓1(𝑇)𝜃𝐹(𝐴11𝑥1 + 𝐴12�̂�𝑀) 
0 = 𝑓1(𝑇)𝜃(𝐴21�̃�1) + 𝑓1(𝑇)𝜃𝐹(𝐴21𝑥1 + 𝐴22�̂�𝑀)

+ 𝐵𝐹𝑢 − 𝜗3 
(40) 

where 𝜗3is the filtered version of the switching term and can be 

extracted from the observer by passing 𝐿33𝑠𝑔𝑛(�̃�𝑀) through a 

low-pass filter [34]. In the following, we will consider both of 

the faults separately as by Assumption II, their simultaneous 

occurrence has been excluded. 

Fault 1: 𝐵𝐹  fault (𝜃𝐹 = 0 and 𝐵𝐹 ≠ 0) 

Under this condition, (40) becomes: 

�̇̃�1 = 𝑓1(𝑇)𝜃(𝐴11�̃�1) 
0 = 𝑓1(𝑇)𝜃(𝐴21�̃�1) + 𝐵𝐹𝑢 − 𝜗3 

(41) 

Note that, all the eigen-values of 𝑓1(𝑇)𝜃𝐴11 are negative, 

�̃�1 → 0 as 𝑡 → ∞. Therefore, as 𝑡 → ∞, (41) becomes: 

𝜗3 = 𝐵𝐹𝑢 (42) 

Therefore, the fault can be reconstructed as: 

�̂�𝐹 = 𝜗3/𝑢 (43) 

Fault 2: 𝜃𝐹 fault (𝜃𝐹 ≠ 0 and 𝐵𝐹 = 0) 

Under this condition, (40) becomes: 

�̇̃�1 = 𝑓1(𝑇)𝜃(𝐴11�̃�1) + 𝑓1(𝑇)𝜃𝐹(𝐴11�̂�1 + 𝐴11�̃�1 + 𝐴12�̂�𝑀) 

0 = 𝑓1(𝑇)𝜃(𝐴21�̃�1) 
+𝑓1(𝑇)𝜃𝐹(𝐴21�̂�1 + 𝐴21�̃�1 + 𝐴22�̂�𝑀) − 𝜗3 

(44) 

Note that, in (44) has one algebraic and one differential 

equation. The unknowns are 𝜃𝐹 and �̃�1. Therefore, we can solve 

(44) numerically to find the unknowns. The initial condition to 

this equation can be set to �̃�1 = 0, 𝜃𝐹 = 0 under the assumption 

that the observer error �̃�1 was sufficiently close to zero before 

the fault occurs. This can be made sure by properly tuning the 

gains 𝐿31 and 𝐿32, as mentioned before. 

 

Convergence Analysis of Observer IV 

Note that, �̂�𝑀 in Observer IV dynamics given in (22) is coming 

from Observer II and therefore after the convergence of 

Observer II, we can replace �̂�𝑀 by 𝑥𝑀 in (22). Now, 

considering the Observer IV error dynamics by subtracting (22) 

from (18), we can write that: 

𝜌𝑣𝐶𝑝�̇̃�4 = −𝐾ℎ�̃�4 + 𝑅𝐹𝑓2(𝑇)𝑢
2 − 𝐿4𝑠𝑔𝑛(�̃�4) (45) 

Note that, the sliding surface in this case is 𝑆4 = �̃�4 = 0 as this 

is inside the ‘sign’ term. The reachability to this sliding surface 

𝑆4 can be analyzed using the Lyapunov function candidate 

𝑉4 = 0.5𝜌𝑣𝐶𝑝𝑆4
2. The derivative of the Lyapunov function 

candidate can be written as: 

�̇�4 = 𝜌𝑣𝐶𝑝𝑆4�̇�4 = 𝜌𝑣𝐶𝑝�̃�4�̇̃�4 

⇒ �̇�4 = �̃�4{−𝐾ℎ�̃�4 + 𝑅𝐹𝑓2(𝑇)𝑢
2 − 𝐿4𝑠𝑔𝑛(�̃�4)} 

⇒ �̇�4 = −𝐾ℎ�̃�4
2 + �̃�4𝑅𝐹𝑓2(𝑇)𝑢

2 − 𝐿4|�̃�4| (46) 
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⇒ �̇�4 ≤ �̃�4𝑅𝐹𝑓2(𝑇)𝑢
2 − 𝐿4|�̃�4|, as 𝐾ℎ > 0 (47) 

Now, applying the fact 𝑎𝑏𝑐 ≤ |𝑎||𝑏||𝑐| on the first term of 

RHS of (47), 

�̇�4 ≤ |�̃�4||𝑅𝐹||𝑓2(𝑇)||𝑢
2| − 𝐿4|�̃�4| 

⇒ �̇�4 ≤ |�̃�4|{|𝑅𝐹||𝑓2(𝑇)||𝑢
2| − 𝐿4} (48) 

From (48), we can conclude that for a sufficiently high positive 

gain 𝐿4 which satisfies the condition 

𝐿4 > 𝐸𝑚𝑎𝑥 ≜ |𝑅𝐹|𝑚𝑎𝑥|𝑓2(𝑇)|𝑚𝑎𝑥|𝑢
2|𝑚𝑎𝑥 , ∀𝑡,  �̇�4 < 0 and can 

be written as: 

�̇�4 ≤ −�̅�4√𝑉4 where �̅�4 = √2/𝜌𝑣𝐶𝑝{𝐿4 − 𝐸𝑚𝑎𝑥} > 0 

⇒ 𝑉4(𝑡) ≤ {−
�̅�4
2
𝑡 + √𝑉4(𝑡0)}

2

 (49) 

From the above analysis, it can be seen that 𝑉4 goes to zero and 

the sliding surface 𝑆4 = �̃�4 = 0 is reached in finite time defined 

by 𝑡4 ≤ 2√𝑉4(𝑡0)/�̅�4. Considering that we have 𝑆4 = �̃�4 = 0 

and �̇�4 = �̇̃�4 = 0 in the sliding surface [34], from (23) we can 

write that: 

𝑅𝐹𝑓2(𝑇)𝑢
2 = 𝜗4 (50) 

where 𝜗4 is the filtered version of the switching term and can 

be extracted from the observer by passing 𝐿4𝑠𝑔𝑛(�̃�) through a 

low-pass filter [34]. Note that, from (50), the fault can be 

reconstructed as: 

�̂�𝐹 = 𝜗4/(𝑓2(𝑇)𝑢
2) (51) 

Note: As noticed in the convergence analysis, the estimation of 

the faults 𝐵𝐹  and 𝑅𝐹 requires non-zero input current. This is 

expected because both of these faults enter the battery model by 

multiplying the input current.  

 

Fault Isolation Logic 

Isolation of the faults can be done in the following way: When 

𝜗4 ≠ 0 and 𝜗3 = 0, then 𝑅𝐹 has occurred; when 𝜗4 = 0 and 

𝜗3 ≠ 0, then either 𝜃𝐹 or 𝐵𝐹  has occurred. To isolate 𝜃𝐹 and 𝐵𝐹 , 

the following logic can be used: 

Step 1: To isolate exactly which fault has occurred, the applied 

current through the faulty battery cell should be made zero. 

This can be achieved either online when the battery is in use if 

such provision is present in the battery pack (via power 

electronics circuitry), or offline when the battery is not in use.  

Step 2: Note that, in case of no input current 𝑢 = 0, the fault 𝐵𝐹  

will disappear from the error dynamics equation in (40) thereby 

making 𝜗3 = 0. However, in case of the occurrence of 𝜃𝐹 fault, 

𝜗3 ≠ 0 even after 𝑢 = 0. Based on the value of 𝜗3 under the 

condition 𝑢 = 0, we can isolate these two faults. 

Step 3: If the isolation logic above detects a 𝐵𝐹  fault, then 

select the solution of (43) as the fault estimate. If it is 𝜃𝐹 fault, 

select the solution of (44) as the fault estimate. 

RESULTS & DISCUSSIONS 
In this section, we demonstrate the effectiveness of the 

proposed diagnostic scheme via simulation studies. The original 

SPM with both positive and negative electrode dynamics is 

used as the plant. It therefore adds some modeling uncertainties 

to the simulation. The values of the model parameters are 

adopted from [5] and [36] (6.8 Ah, Metal-Oxide positive 

electrode and Graphite negative electrode). Moreover, 10 mV 

and 0.2
o
C and 10 mA variance noise is added to the voltage, 

temperature and current measurement, respectively to emulate 

measurement uncertainties. A particular simulation case study 

under 1C discharge has been used to verify the potential of the 

diagnostic observers. The observers are initialized with 

different initial conditions to verify the convergence. Under this 

scenario, the performance of the Observer I and II has been 

shown in Fig. 3. It can be seen that both observers are able to 

track the open-circuit thermodynamic potential and surface 

concentration with finite time convergence as mentioned in the 

previous section.  

 

 
Figure 3: Estimation Performance of Observer I and II 

 
Figure 4: Estimation Performance of Observer IV (𝑹𝐅 fault) 

Next, three independent and separate cases have been 

considered as follows: Case 1, A step-like abrupt fault 𝑅𝐹 has 

been injected at 700 sec,  Case 2, A step-like abrupt fault 𝐵𝐹  

fault has been injected at 500 sec, Case 3: A step-like abrupt 

fault 𝜃𝐹 fault has been injected at 100 sec. The estimation 

results are shown in Fig. 4, 5 and 6. From the figures, it can be 

seen that the diagnostic scheme is able to estimate 𝐵𝐹  and 𝑅𝐹 

with sufficient accuracy. However, there is a considerable 

amount of steady-state error in 𝜃𝐹 estimation. We have noted in 

our simulation studies that 𝜃𝐹 fault estimation is more sensitive 
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to the modeling uncertainties than the other two faults. This is 

because this fault is multiplied with the states of the system, 

therefore, the state estimation error under modeling 

uncertainties add more error to the estimate of this fault.  

 

 
Figure 5: Estimation Performance of Observer III (𝑩𝑭 fault) 

 
Figure 6: Estimation Performance of Observer III (𝜽𝑭 fault) 

CONCLUSION 
In this paper, an observer-based fault diagnosis scheme is 

presented that can detect, isolate and estimate a few 

electrochemical faults in Li-ion batteries. A reduced order 

electrochemical-thermal model of the Li-ion cell is used where 

the electrochemical faults are modelled as 

parametric/multiplicative faults in the system. The designs of 

the observers are done based on the sliding mode methodology. 

Convergence of the observers is verified along with the design 

of the observer gains via Lyapunov’s direct method. The 

effectiveness of the fault diagnosis scheme is tested via 

simulation studies and it is found that the fault diagnosis 

scheme is able to detect, isolate and estimate the injected 

parametric faults. 

However, there are some issues that should be considered 

in future extension to this work. The design of the fault 

diagnosis scheme should explicitly consider the effect of the 

modeling uncertainties to improve the robustness of the 

scheme. Finally, the scheme should be validated with 

experimental studies. To do this study, different experimental 

test cases should be designed that capture the effect of different 

electrochemical faults in a physical battery. 
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