
  

 

Abstract—Double-Layer Capacitors (DLC) are becoming 

popular energy storage elements in several systems such as 

automotive propulsion systems, renewable energy storage and 

auxiliary power units. Optimal energy management, estimation 

and control algorithms for such DLCs heavily depend on sensor 

measurements, namely voltage, current and temperature 

sensors. Any fault in such sensors may result in degraded 

operation of DLCs thereby increasing the risk of significant 

damage. In this paper, an equivalent circuit model in 

conjunction with a set of observers is employed to design a 

sensor fault diagnosis scheme for DLCs. The scheme consists of 

an electrical and a temperature observer, the output errors of 

which are used as residual signals for fault diagnosis. Further, 

to suppress the effects of modeling uncertainties, adaptive 

threshold generators are also designed. Simulation studies are 

presented to validate the effectiveness of the proposed 

approach.   

I. INTRODUCTION 

The Double Layer Capacitor has become a popular 
alternative energy storage choice for many applications, such 
as automotive, wind turbine, circuit power protection, and 
aviation [1, 2].  The main attraction of DLC is its long cycle 
life and high power density and can be utilized to assist other 
energy storage elements during high current situations thus 
reducing the aging and fatigue of the main energy storage 
element, e.g. batteries [3]. 

The dependence of DLC on operating conditions can cause 
these devices to undergo severe aging processes [4]. Tracking 
the aging process is necessary for health monitoring and 
optimal management of DLCs [3,5]. Among different 
modeling approaches, the equivalent circuit model (ECM) is 
widely used due to its simplified structure and computational 
efficiency. The parameters of ECM are useful indicators of 
DLC state of health (SOH) [6].  There exist a few approaches 
that explore the estimation problem for DLCs.  For example, 
Extended Kalman Filters (EKF) for state estimation [3,7],  
least squares method for parameter estimation [8,9], a dual 
Kalman filter for combined state and parameter estimation 
[5], sliding mode observer based approach for combined state 
and parameter estimation [10].  

Unlike the estimation problem, fault diagnosis of DLCs is 
an underexplored topic in existing literature.  Of the existing 
literature, fault modes are typically categorized into end-of-
life categories that are correlated with Equivalent Series 
Resistance (ESR) and capacitance values of the DLC [11-13].  
In [12, 13] the ESR and capacitance values are calculated 
using the least squares algorithm and current and voltage 
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measurements.  In [14], over-voltage or over-temperature 
faults are correlated to ESR or capacitance values. However, 
none of these existing works explore the problem of sensor 
fault diagnosis in DLCs. 

Sensor faults can have significant implications on safe 
DLC operation. The feedback-based estimation and optimal 
management algorithm for DLCs generally rely on voltage, 
temperature and current sensor measurements. In this work, 
we propose a model-based sensor fault diagnosis approach 
using an equivalent circuit model due to its computational 
efficiency and ability to predict output with significant 
accuracy. The diagnostic algorithm uses an observer-based 
method which is widely used in model-based fault diagnosis 
[15]. The diagnostic scheme consists of two observers, 
electrical and temperature. The output estimation errors of 
these observers are used as residual signals for fault 
diagnosis. We apply the adaptive thresholding approach to 
deal with uncertainties [16]. The adaptive threshold generator 
is essentially a dynamic filter that generates a threshold value 
based on the known bounds of modeling uncertainties. A 
fault occurs when the residual goes beyond the adaptive 
threshold.  

The rest of the paper is organized as follows. Section II 
discusses the modeling approach for the DLC. Section III 
outlines the diagnostic scheme with observer design and 
adaptive threshold design. Section IV presents simulation 
studies to validate the effectiveness of the approach. Section 
V concludes this work. 

II. MODELING OF DOUBLE-LAYER CAPACITORS 

The equivalent electrical circuit used to model the DLC in 
this paper is shown in Fig.1 with two resistor-capacitor 
branches in parallel where 𝑅𝑓 and 𝑅𝑑 are the resistances and 

𝐶𝑓 and 𝐶𝑑 are the capacitances [17]. Note that, the 𝑅𝑑 − 𝐶𝑑 

branch represents the slow dynamics of the system with 
higher resistance and capacitance whereas the 𝑅𝑓 − 𝐶𝑓 

branch represents the fast dynamics of the system with lower 
resistance and capacitance.  

 

Figure 1: Electrical equivalent circuit model of DLC 

 

Across the capacitors,  the voltage dynamics will be:  

�̇�𝑐𝑓 =
𝐼𝑓

𝐶𝑓

 (1) 
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�̇�𝑐𝑑 =
𝐼𝑑
𝐶𝑑

 (2) 

where 𝑉𝑐𝑓 is the voltage across capacitor 𝐶𝑓, 𝑉𝑐𝑑 is the 

voltage across capacitor 𝐶𝑑, 𝐼𝑑 is the current flowing through 
the 𝑅𝑑 − 𝐶𝑑 branch, 𝐼𝑓 is the current flowing through the 

𝑅𝑓 − 𝐶𝑓 branch. Kirchoff’s current law gives the total current 

𝐼𝑑𝑙𝑐 entering the DLC as: 

𝐼𝑑𝑙𝑐 = 𝐼𝑓 + 𝐼𝑑 (3) 

and the effective total voltage 𝑉𝑑𝑙𝑐  across the DLC is: 

𝑉𝑑𝑙𝑐 = 𝐼𝑓𝑅𝑓 + 𝑉𝑐𝑓 = 𝐼𝑑𝑅𝑑 + 𝑉𝑐𝑑 (4) 

Here, positive current indicates discharge. In this model, a 
lumped thermal dynamics model is used [17].  We follow the 
convention of positive current indicates discharge. The 
lumped thermal dynamics of the DLC is given by: 

𝑚𝑐�̇� = 𝐼𝑑𝑙𝑐
2 𝑅𝑓 − ℎ𝐴(𝑇 − 𝑇𝑎𝑚𝑏) (5) 

where 𝑇 is the DLC temperature, 𝑚𝑐 is the mass multiplied 
by the specific heat capacity of the DLC, and ℎ𝐴 is the 
effective heat transfer coefficient. The heat generated in (5) 
is not a function of 𝑅𝑑 because the current through 𝑅𝑑 is 
negligible when compared to the current through 𝑅𝑓 [17]. 

It is worth mentioning that the DLC model parameters 𝑅𝑓, 

𝑅𝑑, 𝐶𝑓 and 𝐶𝑑 may depend on the SOC, temperature and 

current. However, experimental data from literature and 
DLC manufacturer datasheets show that these parameters are 
primarily functions of temperature [17, 19]. 

III. DIAGNOSTIC SCHEME 

In this section, we will discuss the diagnostic scheme in 
detail. As mentioned before, the main objective of this 
scheme is to detect and isolate the faults in the sensors of 
DLC, namely the voltage, temperature and current sensor. 
From the depiction of the scheme in Fig. 2, it can be noted 
that it consists of two parts: residual generation via the 
electrical and temperature observer and adaptive threshold 
generation to suppress the effect of uncertainties. Thereafter, 
the residuals are compared to the adaptive thresholds in the 
residual evaluation stage. The details of the design of these 
individual elements are discussed in the subsequent sections. 
In the following analysis, we will use 𝐼𝑑𝑙𝑐𝑚

, 𝑉𝑑𝑙𝑐𝑚
 and 𝑇𝑚 to 

denote measured current, voltage and temperature. 

 

Figure 2: Diagnostic scheme 

A. Observer Design for Primary Residual Generation  

Note that, the structure of the DLC model given in (1)-(4) 
is complex for observer design as the individual inputs to the 
state dynamics (i.e. 𝐼𝑓 and 𝐼𝑑) are not known. To overcome 

this issue, we reduce the model complexity by reformulating 
(1)-(4). Taking the time-derivative on the both sides of the 
first equation of (4), we have: 

�̇�𝑑𝑙𝑐 = 𝐼�̇�𝑅𝑓(𝑇) + 𝐼𝑓�̇�𝑓(𝑇) + �̇�𝑐𝑓 

⇒ �̇�𝑑𝑙𝑐 = 𝐼�̇�𝑅𝑓(𝑇) + 𝐼𝑓
𝜕𝑅𝑓

𝜕𝑇
�̇� + �̇�𝑐𝑓 (6) 

Now, using (1), (6) can be written as: 

�̇�𝑑𝑙𝑐 = 𝐼�̇�𝑅𝑓(𝑇) + 𝐼𝑓
𝜕𝑅𝑓

𝜕𝑇
�̇� +

𝐼𝑓

𝐶𝑓(𝑇)
 

(7) 

Note that, the electrical time constant (in order of 
seconds) is much faster than the thermal time constant (in 

order of hour), which justifies the term �̇� to be neglected and 
approximated as zero making (7) as: 

𝐼�̇� = −
𝐼𝑓

𝑅𝑓(𝑇)𝐶𝑓(𝑇)
+

�̇�𝑑𝑙𝑐

𝑅𝑓(𝑇)
 

(8) 

Following similar steps, based on the second equation of 
(4), the state dynamics for 𝐼𝑑 can be written as: 

𝐼�̇� = −
𝐼𝑑

𝑅𝑑(𝑇)𝐶𝑑(𝑇)
+

�̇�𝑑𝑙𝑐

𝑅𝑑(𝑇)
 

(9) 

Note that, the input excitation in (8) and (9) is �̇�𝑑𝑙𝑐  which 
is not measured, however, 𝑉𝑑𝑙𝑐  is a measured variable. To 
avoid the direct differentiation of the measured variable, we 
apply the following filtering mechanism [18]: 

�̇� = −
𝑧

𝜏𝑓

+ 𝑉𝑑𝑙𝑐  

𝑢 = −𝑧 +
𝑉𝑑𝑙𝑐

𝜏𝑓

 
(10) 

where 𝑧 is an intermediate auxiliary variable, 𝜏𝑓 is the filter 

time constant and the filter output 𝑢 can be substituted in 

place of  �̇�𝑑𝑙𝑐  while implementing (8)-(9). Note that, the 
choice of 𝜏𝑓 should be made under the trade-off of 

measurement noise amplification and filter convergence rate. 
Therefore, the reformulated electrical dynamics can be 
written as: 

𝐼�̇� = −
𝐼𝑓

𝑅𝑓(𝑇)𝐶𝑓(𝑇)
+

𝑢

𝑅𝑓(𝑇)
 

𝐼�̇� = −
𝐼𝑑

𝑅𝑑(𝑇)𝐶𝑑(𝑇)
+

𝑢

𝑅𝑑(𝑇)
 

(11) 

The measured output of the above system is the total DLC 
current 𝐼𝑑𝑙𝑐𝑚

= 𝐼𝑓 + 𝐼𝑑. Now, we discuss the observer design 

process for the residual generation. Based on the system 
model (11) and output error injection, the following electrical 
observer structure is chosen as: 
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𝐼̇𝑓

= −
𝐼𝑓

𝑅𝑓(𝑇𝑚)𝐶𝑓(𝑇𝑚)
+

𝑢

𝑅𝑓(𝑇𝑚)
+ 𝐿𝑓(𝑇𝑚)(𝐼𝑑𝑙𝑐𝑚

− 𝐼𝑑𝑙𝑐) 

𝐼̇𝑑

= −
𝐼𝑑

𝑅𝑑(𝑇𝑚)𝐶𝑑(𝑇𝑚)
+

𝑢

𝑅𝑑(𝑇𝑚)
+ 𝐿𝑑(𝑇𝑚)(𝐼𝑑𝑙𝑐𝑚

− 𝐼𝑑𝑙𝑐) 
 (12) 

where 𝑇𝑚 is the measured temperature, 𝐼𝑓 and 𝐼𝑑 are the 

estimated branch currents, 𝐼𝑑𝑙𝑐 = 𝐼𝑓 + 𝐼𝑑 is the estimated 

output, 𝐿𝑓 and 𝐿𝑑 are observer gains that are scheduled as 

functions of temperature. Subtracting (12) from (11), the 
nominal estimation error dynamics (i.e. without any sensor 
fault) can be written as: 

[
𝐼̇𝑓

𝐼̇𝑑
] = [

𝑎11 𝑎12

𝑎21 𝑎22
] [

𝐼𝑓

𝐼𝑑
] 

with 𝑎11 = −
1

𝑅𝑓(𝑇𝑚)𝐶𝑓(𝑇𝑚)
− 𝐿𝑓(𝑇),𝑎12 = −𝐿𝑓(𝑇), 

𝑎21 = −𝐿𝑑(𝑇), 𝑎22 = −
1

𝑅𝑑(𝑇)𝐶𝑑(𝑇)
− 𝐿𝑑(𝑇) 

(13) 

where 𝐼𝑓 = 𝐼𝑓 − 𝐼𝑓, 𝐼𝑑 = 𝐼𝑑 − 𝐼𝑑.  The positive observer 

gains 𝐿𝑓 and 𝐿𝑑 can be determined offline over an 

temperature operating range (𝑇 ∈ [𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥]) to ensure that 
the closed-loop matrix [𝑎11, 𝑎12; 𝑎21, 𝑎22] is Hurwitz stable, 
i. e., all the poles have strictly negative real parts for each 
temperature operating point (𝑇∗). In real-time 
implementation, these pre-determined gains can be fed to the 
observer as a function of temperature. By this selection of 

gains, the estimation errors 𝐼𝑑 , 𝐼𝑓 → 0 as 𝑡 → ∞. Now, we 

define the first residual, 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 1 = (𝐼𝑑𝑙𝑐𝑚
− 𝐼𝑑𝑙𝑐). 

Therefore, if there is no fault, the 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 1 which is 𝐼𝑑𝑙𝑐 in 
this case, goes to zero asymptotically. 

Similarly, the temperature observer structure is chosen as: 

𝑚𝑐�̇̂�
= −ℎ𝐴(�̂� − 𝑇𝑎𝑚𝑏) + 𝐼𝑑𝑙𝑐𝑚

2 𝑅𝑓(𝑇𝑚) + 𝐿𝑇(𝑇𝑚 − �̂�) (14) 

where 𝐿𝑇 is the observer gain to be designed. Subtracting 
(15) and (14), the nominal estimation error dynamics 
(without any sensor fault) can be written as: 

𝑚𝑐�̇̃� = −ℎ𝐴�̃� − 𝐿𝑇�̃� (15) 

The gain 𝐿𝑇 can be chosen as sufficiently high positive to 
ensure the desired convergence rate of the estimation error. 

Now, we define the second residual 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 2 = 𝑇𝑚 − �̂�. 

If there is no fault, the 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 2 which is �̃� in this case, 
goes to zero asymptotically. 

In the previous analysis, it is proved that the residuals are 
zero in presence of no faults. Now, we analyze the effects of 
the individual sensor faults on the residuals.  

Case 1, Voltage sensor fault: In case of voltage sensor fault, 
∆𝑉, we have 𝑉𝑑𝑙𝑐𝑚

= 𝑉𝑑𝑙𝑐 + ∆𝑉. Therefore, the electrical 

observer error dynamics becomes: 

[
𝐼̇𝑓

𝐼̇𝑑
] = [

𝑎11 𝑎12

𝑎21 𝑎22
] [

𝐼𝑓

𝐼𝑑
] +

[
 
 
 
 

∆̇𝑉

𝑅𝑓(𝑇)

∆̇𝑉

𝑅𝑑(𝑇)]
 
 
 
 

 

(16) 

From (16), one can see that the state estimation errors Id and 

If (hence Residual 1) are being driven  ∆̇𝑉 and will be 

nonzero as long as ∆̇𝑉≠ 0. However, in this fault case, the 
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 2 will be zero as the voltage does not affect the 
thermal dynamics. 

Case 2, Current sensor fault: In case of current sensor fault, 
we have 𝐼𝑑𝑙𝑐𝑚

= 𝐼𝑑𝑙𝑐 + ∆𝐼  where ∆𝐼  is the sensor fault. 

Therefore, the electrical observer error dynamics becomes: 

[
𝐼̇𝑓

𝐼̇𝑑
] = [

𝑎11 𝑎12

𝑎21 𝑎22
] [

𝐼𝑓

𝐼𝑑
] + [

𝐿𝑓(𝑇𝑚)∆𝐼

𝐿𝑑(𝑇𝑚)∆𝐼
] 

(17) 

It can be seen from the above equation that state estimation 

errors 𝐼𝑑 , 𝐼𝑓 and hence 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 1 is being driven by the 

fault ∆𝐼 and hence will be non-zero if ∆𝐼≠ 0. Further, the 
temperature observer error dynamics becomes: 

𝑚𝑐�̇̃�
= −ℎ𝐴�̃� − 𝐿𝑇�̃� + {𝐼𝑑𝑙𝑐

2 − (𝐼𝑑𝑙𝑐 + ∆𝐼)
2}𝑅𝑓(𝑇𝑚) (18) 

where it is evident that the 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 2 will be nonzero if  
∆𝐼≠ 0. 

Case 3, Temperature sensor fault: In case of temperature 
sensor fault, we have 𝑇𝑚 = 𝑇 + ∆𝑇 where ∆𝑇 is the sensor 
fault. Therefore, the electrical observer error dynamics 
becomes: 

[
𝐼̇𝑓

𝐼̇𝑑
] = [

𝑎11 𝑎12

𝑎21 𝑎22
] [

𝐼𝑓

𝐼𝑑
] + [

𝑓1(∆𝑇 , 𝐼𝑓 , 𝑢)

𝑓2(∆𝑇 , 𝐼𝑑 , 𝑢)
] 

(19) 

where 𝑓1 and 𝑓2 are the lumped effects of ∆𝑇  which makes 
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 1 nonzero. Similarly, the 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 2 will be 
nonzero in presence of ∆𝑇  temperature as can be seen below: 

𝑚𝑐�̇̃�
= −ℎ𝐴�̃� − 𝐿𝑇�̃� + 𝐼𝑑𝑙𝑐

2 {𝑅𝑓(𝑇) − 𝑅𝑓(𝑇 + ∆𝑇)}
− 𝐿𝑇∆𝑇 (20) 

Isolability of current and temperature sensor fault: It can be 
noted from the discussion above that both residuals will be 
nonzero in presence of either current or temperature sensor 
fault. Therefore, in general these faults may not be isolable. 
However, based on specific characteristics of the system and 
practical consideration, we can derive some isolability 
conditions for these two faults. Generally, the maps 𝑅𝑓(. ), 

𝑅𝑑(. ), 𝐶𝑓(. ) and 𝐶𝑑(. ) have low sensitivity with respect to 

the temperature change (e.g. one may refer to these maps 
shown in [17] for a commercial DLC). Therefore, if the 
temperature sensor fault is not too high, the lumped fault 
effects 𝑓1 and 𝑓2 in (19) will not be significant. It is highly 
likely that such small effects may not be visible in the 
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 1 in presence of modeling uncertainties and 
measurement noise. However, in case of very large 
temperature sensor fault, the effect of 𝑓1 and 𝑓2 might be 
significant making current and temperature sensor faults not 
isolable. 
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Based on the above analysis, now we can derive the fault 
signature table as given below: 

TABLE I: FAULT SIGANTURE TABLE (“1” INDICATES NONZERO, “0” 

INDICATES ZERO, “×” INDICATES EITHER ZERO OR NONZERO) 

Residual Signals Fault Detection/ Isolation 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 1 
(𝐼𝑑𝑙𝑐𝑚

− 𝐼𝑑𝑙𝑐) 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 2 
(𝑇𝑚 − �̂�)  

1 0 Voltage Sensor 

1 1 Current Sensor 

× 1 Temperature Sensor 

 

Note that, in case of temperature sensor fault, we have “×” 
for the 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 1. This indicates that this residual will be 
zero unless of high fault magnitude. 

B. Adaptive Threshold Design for Robustness to 

Uncertainties 

In real applications,  uncertainties such as modeling 
errors, parametric deviations, and measurement inaccuracies 
are always present. Therefore, the residuals will not be zero 
due to the presence of uncertainties even if there is no fault. 
To improve the robustness of the fault detection scheme, 
adaptive thresholds can be designed based on uncertainty 
bounds in the residual evaluation stage [16]. The estimation 
errors, which are the residuals of the detection scheme, will 
be compared to these adaptive thresholds to determine 
whether a fault has occurred. The residual evaluation logic 
will be: if the residual is greater than the threshold, then there 
is fault, otherwise no fault.  

The error dynamics of the electrical observer, along with 
the uncertainties, can be written as: 

[
𝐼̇𝑓

𝐼̇𝑑
] = [

𝑎11 𝑎12

𝑎21 𝑎22
] [

𝐼𝑓

𝐼𝑑
] + [

𝜂𝑓

𝜂𝑑
] 

(21) 

where 𝜂𝑓 , 𝜂𝑑 are the uncertainties and possibly nonlinear 

functions of states and inputs. Based on (21), the 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 1 
error dynamics under no fault can be written as: 

𝐼̇𝑑𝑙𝑐 = 𝐾1𝐼𝑓 + 𝐾2𝐼𝑑 + 𝜂𝑓 + 𝜂𝑑 (22) 

where 𝐾1 = (𝑎11 + 𝑎21) and 𝐾2 = (𝑎12 + 𝑎22). Note that, 
both  𝐾1 and 𝐾2 are negative by choice of the observer gains. 
The above equation can be written as: 

𝐼̇𝑑𝑙𝑐 = 𝐾1(𝐼𝑓 + 𝐼𝑑) + 𝜂 

⇒ 𝐼̇𝑑𝑙𝑐 = 𝐾1𝑚𝐼𝑑𝑙𝑐 + 𝜂 (23) 

where 𝐾1𝑚 = max (𝐾1) over the operating temperature range, 

𝜂 = (𝐾1 − 𝐾1𝑚)𝐼𝑑𝑙𝑐 + (𝐾2 − 𝐾1)𝐼𝑑 + 𝜂𝑓 + 𝜂𝑑 is the lumped 

effect of uncertainties and approximation errors. Next, we 
approximate 𝜂 as linearly parameterized with respect to the 
measured signals: 

𝜂 ≅ 𝜆1𝐼𝑑𝑙𝑐 + 𝜆2𝑢 + 𝜆3𝑇 + 𝜆4 (24) 

where 𝜆𝑖 are generally time-varying, unknown but bounded 
coefficients and 𝜆4 captures all the nonlinearities and 
approximation errors of the linear parameterization. The 

known bounds of these parameters are 𝜆𝑖 ≤ 𝜆̅𝑖. The error 
evolution integral of (23) can be written as: 

 

𝐼𝑑𝑙𝑐(𝑡) = 𝐼𝑑𝑙𝑐(0)𝑒𝐾1𝑚𝑡 + 

∫ 𝑒𝐾1𝑚(𝑡−𝜏){𝜆1(𝜏)𝐼𝑑𝑙𝑐(𝜏) + 𝜆2(𝜏)𝑢(𝜏)
𝑡

0
+ 𝜆3(𝜏)𝑇(𝜏) + 𝜆4(𝜏)}𝑑𝜏 (25) 

Using the bounding argument 𝑎𝑏 ≤ |𝑎||𝑏| on the product 
terms inside the integral, (25) can be written as: 

𝐼𝑑𝑙𝑐(𝑡) ≤ 𝐼𝑑𝑙𝑐(0)𝑒𝐾1𝑚𝑡 + 

∫ {|𝑒𝐾1𝑚(𝑡−𝜏)||𝜆1(𝜏)||𝐼𝑑𝑙𝑐(𝜏)|
𝑡

0

+ |𝑒𝐾1𝑚(𝑡−𝜏)||𝜆2(𝜏)||𝑢(𝜏)|

+ |𝑒𝐾1𝑚(𝑡−𝜏)||𝜆3(𝜏)||𝑇(𝜏)| + |𝑒𝐾1𝑚(𝑡−𝜏)||𝜆4(𝜏)|}𝑑𝜏 (26) 

Note the 𝐾1𝑚 is a negative scalar and therefore we have the 

following condition always satisfied 𝑒𝐾1𝑚𝑡 > 0 ⇒ |𝑒𝐾1𝑚𝑡| =

𝑒𝐾1𝑚𝑡 , ∀𝑡 ≥ 0. Using this condition and the bounds 𝜆𝑖 ≤ 𝜆̅𝑖, 
we can re-write (26) as: 

𝐼𝑑𝑙𝑐(𝑡) ≤ 𝐼𝑡ℎ ≜ 𝐼𝑑𝑙𝑐(0)𝑒𝐾1𝑚𝑡 + 

∫ {𝑒𝐾1𝑚(𝑡−𝜏)𝜆1̅|𝐼𝑑𝑙𝑐(𝜏)| + 𝑒𝐾1𝑚(𝑡−𝜏)𝜆̅2|𝑢(𝜏)|
𝑡

0

+ 𝑒𝐾1𝑚(𝑡−𝜏)𝜆̅3|𝑇(𝜏)| + 𝑒𝐾1𝑚(𝑡−𝜏)𝜆̅4}𝑑𝜏 (27) 

The equation (27) can be equivalently written as a dynamic 
system with the following state-space form: 

�̇�1 = 𝐾1𝑚𝑥1 + 𝜆1̅|𝐼𝑑𝑙𝑐| 
�̇�2 = 𝐾1𝑚𝑥2 + 𝜆̅2|𝑢| 
�̇�3 = 𝐾1𝑚𝑥3 + 𝜆̅3|𝑇| 
�̇�4 = 𝐾1𝑚𝑥4 + 𝜆̅4 
𝐼𝑡ℎ = 𝐼𝑑𝑙𝑐(0)𝑒𝐾1𝑚𝑡 + 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 (28) 

where 𝜆̅𝑖, |𝐼𝑑𝑙𝑐|, |𝑢|, |𝑇| are the known inputs to the system, 
𝑥𝑖 are the internal states and 𝐼𝑡ℎ is the output of the system 
which is also the adaptive threshold to the 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 1 which 

is 𝐼𝑑𝑙𝑐 in case of no fault. 
Similar to the electrical observer error dynamics, the 

temperature observer error dynamics with additive 
uncertainties can be written as: 

𝑚𝑐�̇̃� = −ℎ𝐴�̃� − 𝐿𝑇�̃� + 𝜂𝑇 (29) 

where 𝜂𝑇 is the uncertainty and possibly nonlinear function 
of states and inputs. The uncertainty can be approximated as 
a linearly parameterized function of measured signals 
affecting the thermal dynamics: 

𝜂𝑇 ≅ 𝜗1𝐼𝑑𝑙𝑐 + 𝜗2𝑇 + 𝜗3 (30) 

where 𝜗𝑖 are generally time-varying, unknown but bounded 
coefficients and 𝜗3 captures all the nonlinearities and 
approximation errors of the linear parameterization. The 

known bounds of these parameters are 𝜗𝑖 ≤ �̅�𝑖. Following the 
similar steps as in case of the electrical error dynamics, we 
can design the following state-space system: 

�̇�1 = −(ℎ𝐴 + 𝐿𝑇)𝑧1 + �̅�1|𝐼𝑑𝑙𝑐| 
�̇�2 = −(ℎ𝐴 + 𝐿𝑇)𝑧2 + �̅�2|𝑇| 
�̇�3 = −(ℎ𝐴 + 𝐿𝑇)𝑧3 + �̅�3 
𝑇𝑡ℎ = �̃�𝑑𝑙𝑐(0)𝑒−(ℎ𝐴+𝐿𝑇)𝑡 + 𝑧1 + 𝑧2 + 𝑧3 (31) 

where �̅�𝑖, |𝐼𝑑𝑙𝑐|, |𝑇| are the known inputs to the system, 𝑧𝑖 
are the internal states and 𝑇𝑡ℎ is the output of the system  
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which is also the adaptive threshold to the 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 2. 

IV. SIMULATION STUDIES 

In this section, we present the simulation case studies to 
validate the effectiveness of the proposed diagnostic scheme. 
The model parameters of a commercial DLC have been 
adopted from [17]. The experimentally validated model of 
DLC is subjected to a cyclic current profile generally used as 
testing protocol [17]: The DLC is charged with 60 A until it 
reaches 3 V, then 15 sec rest period, then the DLC is 
discharged with 60 A until it reaches 1.5 V followed by 
another 15 sec of rest. The current profile along with the 
voltage and temperature responses are shown in Fig. 3 for a 
nominal (non-faulty) condition. 

 

Figure 3: DLC current profile long with temperature and voltage responses 

Based on the model parameters, the electrical observer 
gains are designed as a function of operating temperature and 
shown in Fig. 4. The temperature observer gain is chosen as 
constant 0.001. 

 

Figure 4: Electrical observer gains as functions of operating temperature 

The isolability condition can be seen on the  steady-state 
values of 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 1 as a function of temperature sensor 
fault magnitude (Fig. 5). It can be seen that the effect of 
temperature sensor fault is relatively small on this residual 
and may not be visible in presence of uncertainties and 
measurement noise. 

 

Figure 5: Steady-state values of Residual 1 as a function of temperature 
senor fault magnitude. 

Next, we test the effectiveness of the proposed approach. 
To emulate a realistic scenario, we inject measurement noise 
of 0.05 V, 0.1 deg C and 0.2 A and modeling uncertainties as 
shown in (24) and (30). We simulate four  test scenarios. 

Test Case 1: A voltage bias fault of 0.4 V is injected at 150 
sec and the residual responses are given in Fig. 6. Note that, 
as shown in Table 1, the residual shows the signature 
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 1 = 1, 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 2 = 0 confirming it to be a 
voltage sensor fault. As the fault under consideration is a bias 
fault, we are able to see a spike at 150 sec.  
 

 
Figure 6: Residual responses for Test case 1 (voltage sensor bias fault 0.4 V 

injected at 150 sec) 

 

Figure 7: Residual responses for Test case 2 (temperature sensor bias fault 
0.3 deg C injected at 150 sec) 
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Figure 8: Residual responses for Test case 3 (current sensor bias fault 10 A 
injected at 150 sec) 

 

Figure 9: Residual responses for Test case 4 (voltage sensor incipient ramp-
type fault 0.02 V/sec injected at 150 sec) 

 
Test Case 2: A temperature bias fault of 0.3 deg C is injected 
at 150 sec and the residual responses are given in Fig. 7. Note 
that, as shown in Table 1, the residual shows the signature 
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 1 = 0, 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 2 = 1 confirming it to be a 
temperature sensor fault. As the fault magnitude is not too 
large, therefore, this fault is isolable from the current sensor 
fault.  
Test Case 3: A current sensor bias fault of 10 A is injected at 
150 sec and the residual responses are given in Fig. 8. In this 
case, both of the residuals are high confirming it to be a 
current sensor fault.  
Test Case 4: An incipient voltage sensor fault with a 
0.02V/sec rate is injected at 150 sec and the residual 
responses are given in Fig. 9. In this case, 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 1 settles 
to a constant value above the threshold as the fault is of 
ramp-type whereas 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 2 remains below the threshold. 

V. CONCLUSION 

In this paper a model-based sensor fault diagnosis 

approach is presented for DLCs. The diagnostic scheme is 

based on two observers, electrical observer and temperature 

observer. The output errors of these observers are used as 

residuals for fault detection. To suppress the effect of 

modeling uncertainties, adaptive threshold generators have 

been designed.. The future extension of this work will be the 

experimental validation of the scheme under different 

operating conditions. 
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