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Abstract: Lithium-ion batteries with different applications in industries need to be safe, reliable and 
long-lasting energy storage systems. The internal temperature of the battery, which is higher and more 
critical compared to the surface temperature, can be affected by internal thermal failures. Hence, internal 
temperature estimation and fault diagnosis is necessary for Lithium-ion batteries to avoid the problem of 
overheating. In this paper, a Luenberger observer is designed to detect and isolate three main thermal 
failures in the battery, consisting of thermal runaway, convective cooling resistance fault, and internal 
thermal resistance fault. The primary residuals generated by the observer are fed into two designed filters 
to create secondary residuals. By using the secondary residuals, an estimation of effect of the faults on 
the system can be obtained.  
   Keywords: Lithium-ion Batteries, Fault Diagnosis, Thermal Failure, Observer. 

 

1. INTRODUCTION 

Lithium-ion batteries are used extensively in electrified 
transportation such as hybrid electric vehicle (HEV) 
applications as well as stationary energy storage for power 
grids (see Divya (2009)). Despite being a promising 
candidate for energy storage solutions, these batteries still 
suffer from safety and reliability issues. One of the key 
critical safety aspects in Lithium-ion batteries is the thermal 
instability. To resolve this issue, advanced battery 
management systems should be designed with intelligent 
thermal management strategies that can prevent thermal 
failures. One of the possible ways to prevent such thermal 
failures lies in early detection and accommodation of thermal 
faults in the battery. In this paper, we propose a diagnostics 
scheme for detection and isolation of some thermal faults 
along with estimating some characteristics of the fault effects. 

Several thermal modelling strategies for Lithium-ion batteries 
have been presented in literature. The first category of the 
thermal models possess high accuracy due to their predictive 
ability of the temperature distribution inside the battery (see 
Hallaj et al, (1999) and Maleki et al (2003) and Gu et al 
(2000)).  However, this accuracy comes with the 
disadvantage of high computation burden making them less 
suitable for real-time applications. The second category of 
models which predict the lumped average temperature of the 
cell, are computationally efficient for real-time purposes at 
the cost of lower accuracy (see Smith et al (2006) and Forgez 
et al (2010)).  The third category of models consists of a 
trade-off between the first two categories in terms of 
accuracy and computational efficiency. This kind of model 
uses two-state approximation of the thermal dynamics inside 

the cell and predicts the surface and the core temperatures of 
the cell Forgez et al (2010) and Park et al (2003). Here, we 
resort to the third category model for designing the diagnosis 
scheme. 

In existing literature, Lithium-ion battery estimation 
problems have received a lot of attention in the past few 
years. Different state of charge (SOC) and state of health 
(SOH) estimation techniques have been proposed using 
equivalent circuit models (see Kim (2006) and Hu et al 
(2012)), and electrochemical models (see Dey et al (2015a) , 
Dey et al (2015b), Dey et al (2014a), Dey et al (2014b), Klein 
et al (2013) and Moura et al (2012)). Similarly, an adaptive 
estimation algorithm for a two-state thermal model has been 
presented in Lin et al (2013).   

The fault diagnosis problems in Lithium-ion batteries are 
relatively less discussed in existing literature. Some existing 
approaches discuss sensor and actuator fault detection (see 
Marcicki et al (2010 and Liu et al (2014)) and Lombardi et al 
(2014)), over charge and over-discharge fault detection (see 
Singh et al (2013)). The authors of the present paper 
proposed sensor fault diagnosis scheme and electrochemical 
diagnostics scheme (see Dey et al (2015c) and Dey et al 
(2015d)). However, very few of existing approaches address 
internal thermal faults in the battery system. For example 
Marcicki et al (2010) and Liu et al (2014) used a one-state 
averaged thermal model for fault detection. However, as 
mentioned before, this one-state thermal model may not be 
able to capture the different internal thermal faults. In this 
paper, we extend this research by proposing a two-state 
thermal model-based diagnostics scheme that is able to detect 
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and isolate different internal thermal faults along with 
estimating the fault effects. 

In this paper, we consider three different internal thermal 
faults, namely, thermal runaway, convective cooling 
resistance fault, and internal thermal resistance fault. A 
Luenberger observer is used for generating two primary 
residual signals that are used to detect and isolate different 
thermal faults. Further, based on the observer error dynamics, 
two secondary filters are designed, the input of which are the 
primary residuals. The outputs from the filters are treated as 
secondary residuals and essentially serve as estimates of the 
fault effects. 

The rest of the paper is organized as follows: In section 2, the 
two-state thermal model of the battery is described, section 3 
describes the proposed thermal fault diagnosis scheme. The 
simulation results are presented in section 4 and conclusion is 
derived in section 5. 

2. THERMAL MODELING OF LITHIUM-ION BATTERY 

2.1 Lithium-ion Battery Nominal Model 

In this paper, the battery thermal model is radial in nature 
with a heat source in the core (see Forgez et al (2010), Park et 
al (2003) and Lin et al (2013)).  The model consists of two 
states, the core temperature 𝑇𝑇𝑐𝑐 and the surface temperature 𝑇𝑇𝑠𝑠 
such that  

𝐶𝐶𝑐𝑐𝑇̇𝑇𝑐𝑐 = 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑐𝑐
𝑅𝑅𝑐𝑐

+ 𝐼𝐼2𝑅𝑅 (1) 

𝐶𝐶𝑠𝑠𝑇̇𝑇𝑠𝑠 = − 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑐𝑐
𝑅𝑅𝑐𝑐

+
𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑠𝑠

𝑅𝑅𝑢𝑢
 (2) 

where R is the battery internal resistance, 𝑅𝑅𝑐𝑐 is the thermal 
resistance between the core and surface, 𝑅𝑅𝑢𝑢 is the convective 
cooling resistance between the surface and surrounding air 
and is a function of air coolant flow rate V, 𝐶𝐶𝑐𝑐  is the heat 
capacity inside battery, 𝐶𝐶𝑠𝑠 is the heat capacity of the battery 
surface material, and 𝑇𝑇𝑓𝑓  is the air temperature of surrounding 
environment.  

For battery electrical dynamics, we have considered a zeroth 
order equivalent circuit model that consists of an open-circuit 
voltage source and the internal resistance in series. The 
electrical dynamics can be obtained from Kirchhoff’s law: 

𝑉𝑉 = 𝐸𝐸0 − 𝐼𝐼𝐼𝐼 (3) 

where 𝑉𝑉 is the battery terminal voltage, and 𝐸𝐸0 is the open-
circuit voltage. Similarly, the State of Charge (𝑆𝑆𝑆𝑆𝑆𝑆) 
dynamics of the battery can be written as: 

𝑆𝑆𝑆𝑆𝑆𝑆̇ = −𝐼𝐼/𝑄𝑄 (4) 

where 𝑄𝑄 is the battery capacity. Note that 𝐸𝐸0 is a function of 
𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑇𝑇𝑐𝑐. In this paper, we concentrate on the Hybrid 
Electric Vehicle application of the battery and consider a 
narrow 𝑆𝑆𝑆𝑆𝑆𝑆 operating range. We assume the following 
expression of the 𝐸𝐸0: 

 
Figure 1: Battery lumped thermal modelling approach 

𝐸𝐸0 = 𝛼𝛼0 + 𝛼𝛼1𝑆𝑆𝑆𝑆𝐶𝐶 + 𝛼𝛼2𝑇𝑇𝑐𝑐 (5) 

where 𝛼𝛼0, 𝛼𝛼1 and 𝛼𝛼2 are constant parameters that can be 
determined apriori by offline identification techniques. We 
also assume that the internal resistance (𝑅𝑅) of the battery is 
approximately constant and known with sufficient accuracy 
in the considered operating range.  

2.2 Fault Modelling 

In this paper, we consider three different thermal faults in the 
battery: 

Fault 1: Convective cooling resistance fault, which is 
represented by a significant deviation in the parameter 𝑅𝑅𝑢𝑢 
from its nominal value. 

Fault 2: Internal thermal resistance fault, which is modelled 
by change in the parameter 𝑅𝑅𝑐𝑐 from its nominal value. 

Fault 3: Thermal runaway fault, which is modelled by an 
additional heat-generation term that contributes to the core 
temperature rise in the battery. This is represented as an 
additional unknown input in the core temperature dynamics 
(1). 

Considering these three faults, the faulty model of the battery 
can be written as: 

𝐶𝐶𝑐𝑐𝑇̇𝑇𝑐𝑐 = 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑐𝑐
𝑅𝑅𝑐𝑐 + ∆𝑅𝑅𝑐𝑐

+ 𝐼𝐼2𝑅𝑅 + ∆𝑢𝑢 (6) 

𝐶𝐶𝑠𝑠𝑇̇𝑇𝑠𝑠 = − 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑐𝑐
𝑅𝑅𝑐𝑐+∆𝑅𝑅𝑐𝑐

+
𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑠𝑠

𝑅𝑅𝑢𝑢 + ∆𝑅𝑅𝑢𝑢
 (7) 

where ∆𝑅𝑅𝑢𝑢, ∆𝑅𝑅𝑐𝑐 and ∆𝑢𝑢 represent Fault 1, 2 and 3 
respectively. 

3. THERMAL DIAGNOSTIC SCHEME 

First, we setup the diagnostics problem. The goal of the 
diagnostic scheme is to detect, isolate and if possible, provide 
some estimate of the thermal faults discussed in the previous 
section. The following assumptions are considered in 
designing steps: 

Assumption 1: The on-board measurements from battery are 
surface temperature  𝑇𝑇𝑠𝑠, input current 𝐼𝐼 and terminal voltage 
𝑉𝑉. These measurements are NOT faulty. 
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voltage source and the internal resistance in series. The 
electrical dynamics can be obtained from Kirchhoff’s law: 

𝑉𝑉 = 𝐸𝐸0 − 𝐼𝐼𝐼𝐼 (3) 

where 𝑉𝑉 is the battery terminal voltage, and 𝐸𝐸0 is the open-
circuit voltage. Similarly, the State of Charge (𝑆𝑆𝑆𝑆𝑆𝑆) 
dynamics of the battery can be written as: 

𝑆𝑆𝑆𝑆𝑆𝑆̇ = −𝐼𝐼/𝑄𝑄 (4) 

where 𝑄𝑄 is the battery capacity. Note that 𝐸𝐸0 is a function of 
𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑇𝑇𝑐𝑐. In this paper, we concentrate on the Hybrid 
Electric Vehicle application of the battery and consider a 
narrow 𝑆𝑆𝑆𝑆𝑆𝑆 operating range. We assume the following 
expression of the 𝐸𝐸0: 

 
Figure 1: Battery lumped thermal modelling approach 

𝐸𝐸0 = 𝛼𝛼0 + 𝛼𝛼1𝑆𝑆𝑆𝑆𝐶𝐶 + 𝛼𝛼2𝑇𝑇𝑐𝑐 (5) 

where 𝛼𝛼0, 𝛼𝛼1 and 𝛼𝛼2 are constant parameters that can be 
determined apriori by offline identification techniques. We 
also assume that the internal resistance (𝑅𝑅) of the battery is 
approximately constant and known with sufficient accuracy 
in the considered operating range.  

2.2 Fault Modelling 

In this paper, we consider three different thermal faults in the 
battery: 

Fault 1: Convective cooling resistance fault, which is 
represented by a significant deviation in the parameter 𝑅𝑅𝑢𝑢 
from its nominal value. 

Fault 2: Internal thermal resistance fault, which is modelled 
by change in the parameter 𝑅𝑅𝑐𝑐 from its nominal value. 

Fault 3: Thermal runaway fault, which is modelled by an 
additional heat-generation term that contributes to the core 
temperature rise in the battery. This is represented as an 
additional unknown input in the core temperature dynamics 
(1). 

Considering these three faults, the faulty model of the battery 
can be written as: 

𝐶𝐶𝑐𝑐𝑇̇𝑇𝑐𝑐 = 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑐𝑐
𝑅𝑅𝑐𝑐 + ∆𝑅𝑅𝑐𝑐

+ 𝐼𝐼2𝑅𝑅 + ∆𝑢𝑢 (6) 

𝐶𝐶𝑠𝑠𝑇̇𝑇𝑠𝑠 = − 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑐𝑐
𝑅𝑅𝑐𝑐+∆𝑅𝑅𝑐𝑐

+
𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑠𝑠

𝑅𝑅𝑢𝑢 + ∆𝑅𝑅𝑢𝑢
 (7) 

where ∆𝑅𝑅𝑢𝑢, ∆𝑅𝑅𝑐𝑐 and ∆𝑢𝑢 represent Fault 1, 2 and 3 
respectively. 

3. THERMAL DIAGNOSTIC SCHEME 

First, we setup the diagnostics problem. The goal of the 
diagnostic scheme is to detect, isolate and if possible, provide 
some estimate of the thermal faults discussed in the previous 
section. The following assumptions are considered in 
designing steps: 

Assumption 1: The on-board measurements from battery are 
surface temperature  𝑇𝑇𝑠𝑠, input current 𝐼𝐼 and terminal voltage 
𝑉𝑉. These measurements are NOT faulty. 
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Assumption 2: Nominal values of all the battery parameters 
are known with sufficient accuracy. 

Assumption 3: No multiple faults can occur at the same time. 
This assumption is required to facilitate the isolation of the 
faults. 

Considering the faulty battery model (6), (7), and terminal 
voltage equation (3), the state-space model of the battery can 
be written as: 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵1𝑢𝑢2 + 𝐵𝐵2𝑇𝑇𝑓𝑓 + 𝑓𝑓 (8) 

 𝑦𝑦1 = 𝛼𝛼0 + 𝛼𝛼1𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛼𝛼2𝑥𝑥1 − 𝑢𝑢𝑢𝑢
𝑦𝑦2 = 𝑥𝑥2 (9) 

where 𝑥𝑥 = [𝑥𝑥1, 𝑥𝑥2]𝑇𝑇, 𝑥𝑥1 = 𝑇𝑇𝑐𝑐, 𝑥𝑥2 = 𝑇𝑇𝑠𝑠, 𝑦𝑦1 = 𝑉𝑉, 𝑢𝑢 = 𝐼𝐼 and 

𝑓𝑓 = [𝑓𝑓1, 𝑓𝑓2]𝑇𝑇, 𝐴𝐴 = [𝐴𝐴11 𝐴𝐴12
𝐴𝐴21 𝐴𝐴22

], 𝐴𝐴11 = −1/𝑅𝑅𝑐𝑐𝐶𝐶𝑐𝑐, 𝐴𝐴12 =
1/𝑅𝑅𝑐𝑐𝐶𝐶𝑐𝑐, 𝐴𝐴21 = −1/𝑅𝑅𝑐𝑐𝐶𝐶𝑠𝑠, 𝐴𝐴22 = −1/𝑅𝑅𝑢𝑢𝐶𝐶𝑠𝑠 − 1/𝑅𝑅𝑐𝑐𝐶𝐶𝑠𝑠, 𝐵𝐵1 =
[1/𝐶𝐶𝑐𝑐, 0]𝑇𝑇, 𝐵𝐵2 = [0,1/𝑅𝑅𝑢𝑢𝐶𝐶𝑠𝑠]𝑇𝑇. Note that, 𝑓𝑓1 and 𝑓𝑓2 represent 
the lumped additive effect of the afore-mentioned faults. The 
mapping from the actual faults to 𝑓𝑓1 and 𝑓𝑓2 is given below: 

Table 1: Fault mapping 

Actual Faults Fault Map 

∆𝑅𝑅𝑢𝑢 𝑓𝑓1 = 0, 𝑓𝑓2 ≠ 0 

∆𝑅𝑅𝑐𝑐 𝑓𝑓1 ≠ 0, 𝑓𝑓2 ≠ 0 

∆𝑢𝑢 𝑓𝑓1 ≠ 0, 𝑓𝑓2 = 0 

This mapping and the additive description of the faults in (8) 
and (9) will be useful for designing the diagnostic scheme. 
Essentially, we treat the problem in detecting, isolating and 
estimating 𝑓𝑓1 and 𝑓𝑓2 which is equivalent to detecting and 
isolating ∆𝑅𝑅𝑢𝑢, ∆𝑅𝑅𝑐𝑐 and ∆𝑢𝑢 faults. However, we will only be 
able to estimate 𝑓𝑓1 and 𝑓𝑓2, which are the lumped effects of 
the actual faults, not the exact actual faults (∆𝑅𝑅𝑢𝑢, ∆𝑅𝑅𝑐𝑐 and 
∆𝑢𝑢). 

The fault diagnosis scheme is shown in Fig. 2. The scheme is 
based on a Luenberger-type observer based on the battery 
nominal model (which is (8) and (9) with 𝑓𝑓1, 𝑓𝑓2 = 0). The 
observer generates two primary residuals (𝑟𝑟1 and 𝑟𝑟2) that are 
used to detect and isolate 𝑓𝑓1 and 𝑓𝑓2. Then, these two primary 
residuals are passed through two filters and generate two 
secondary residuals (𝑠𝑠1 and 𝑠𝑠2) which serve as estimates 
of𝑓𝑓1 and 𝑓𝑓2 respectively. The fault signature table is shown 
below. 

Table 2: Fault signature table 

𝑟𝑟1 𝑟𝑟2 Fault 

1 0 𝑓𝑓1 (estimate is given by 𝑠𝑠1) 

0 1 𝑓𝑓2 (estimate is given by 𝑠𝑠2) 

 
Figure 2: The diagnostic scheme 

2.1 Primary Residual Generation 

A Luenberger-type observer is used to generate the primary 
residuals. The observer structure is given by: 

𝑥̇̂𝑥 = 𝐴𝐴𝑥̂𝑥 + 𝐵𝐵1𝑢𝑢2 + 𝐵𝐵2𝑇𝑇𝑓𝑓 + 𝐿𝐿[𝑦̃𝑦1, 𝑦̃𝑦2]𝑇𝑇 (10) 

 𝑦̂𝑦1 = 𝛼𝛼0 + 𝛼𝛼1𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛼𝛼2𝑥̂𝑥1 − 𝑢𝑢𝑢𝑢
𝑦̂𝑦2 = 𝑥̂𝑥2 (11) 

where 𝐿𝐿 = [𝐿𝐿11 𝐿𝐿12
𝐿𝐿21 𝐿𝐿22

] 𝑦̃𝑦1 = 𝑦𝑦1 − 𝑦̂𝑦1 and 𝑦̃𝑦2 =  𝑦𝑦2 − 𝑦̂𝑦2. We 

assume that correct 𝑆𝑆𝑆𝑆𝑆𝑆 information is available via 
Coulomb-counting. Subtracting (10) and (11) from (8) and 
(9), the nominal error dynamics of the observer can be 
written as: 

𝑥̇̃𝑥 = 𝐴𝐴𝑥̃𝑥 − 𝐿𝐿[𝑦̃𝑦1, 𝑦̃𝑦2]𝑇𝑇 (12) 

where 𝑥̃𝑥 = [𝑥̃𝑥1, 𝑥̃𝑥2]𝑇𝑇 𝑥̃𝑥1 = 𝑥𝑥1 − 𝑥̂𝑥1 and 𝑥̃𝑥2 =  𝑥𝑥2 − 𝑥̂𝑥2. Now, 
we choose 𝐿𝐿12 = 𝐴𝐴12, 𝐿𝐿21 = 𝐴𝐴21/𝛼𝛼2 and choose  𝐿𝐿11 and 𝐿𝐿22 
in such a way that (𝐴𝐴11 − 𝐿𝐿11𝛼𝛼2) and (𝐴𝐴22 − 𝐿𝐿22) will be 
negative and provide the desired convergence rate for 
estimation error. Note that, these choices of observer gains 
essentially leads to the following error dynamics of the 
individual states: 

𝑥̇̃𝑥1 = (𝐴𝐴11 − 𝐿𝐿11𝛼𝛼2)𝑥̃𝑥1
𝑥̇̃𝑥2 = (𝐴𝐴22 − 𝐿𝐿22)𝑥̃𝑥2  (13) 

Note that, in presence of faults, the error dynamics can be 
written as: 
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𝑥̇̃𝑥1 = (𝐴𝐴11 − 𝐿𝐿11𝛼𝛼2)𝑥̃𝑥1 + 𝑓𝑓1
𝑥̇̃𝑥2 = (𝐴𝐴22 − 𝐿𝐿22)𝑥̃𝑥2 + 𝑓𝑓2  (14) 

Now, we define the two primary residuals as 𝑟𝑟1 = 𝑦̃𝑦1 and 
𝑟𝑟2 = 𝑦̃𝑦2 and their dynamics can be written as: 

𝑦̇̃𝑦1 = 𝛼𝛼2𝑥̇̃𝑥1 = (𝐴𝐴11 − 𝐿𝐿11𝛼𝛼2)𝑦̃𝑦1 + 𝛼𝛼2𝑓𝑓1
𝑦̇̃𝑦2 = 𝑥̇̃𝑥2 = (𝐴𝐴22 − 𝐿𝐿22)𝑥̃𝑥2 + 𝑓𝑓2  (15) 

We can see from (15) that in presence of faults 𝑓𝑓1 and 𝑓𝑓2, the 
residuals 𝑟𝑟1 and 𝑟𝑟2 will be nonzero respectively. This satisfies 
the fault signature in Table 2. 

2.1 Secondary Residual Generation 

Based on (15), we generate the secondary residuals which 
serve as estimates of the faults 𝑓𝑓1 and 𝑓𝑓2. From (15), the 
transfer function from the faults to primary residuals can be 
written as: 

𝐺𝐺11(𝑠𝑠) = 𝑅𝑅1(𝑠𝑠)
𝐹𝐹1(𝑠𝑠) = 𝛼𝛼2

𝑠𝑠 − (𝐴𝐴11 − 𝐿𝐿11𝛼𝛼2)
𝐺𝐺22(𝑠𝑠) = 𝑅𝑅2(𝑠𝑠)

𝐹𝐹2(𝑠𝑠) = 1
𝑠𝑠 − (𝐴𝐴22 − 𝐿𝐿22) 

(16) 

where 𝑅𝑅1(𝑠𝑠), 𝑅𝑅2(𝑠𝑠), 𝐹𝐹1(𝑠𝑠) and 𝐹𝐹2(𝑠𝑠) are Laplace transforms 
of 𝑟𝑟1, 𝑟𝑟2, 𝑓𝑓1 and 𝑓𝑓2, respectively. Based on (16), we can write 
that: 

𝐾𝐾11(𝑠𝑠) = 𝑆𝑆1(𝑠𝑠)
𝑅𝑅1(𝑠𝑠) = 𝑠𝑠 − (𝐴𝐴11 − 𝐿𝐿11𝛼𝛼2)

𝛼𝛼2(𝜏𝜏1𝑠𝑠 + 1)
𝐾𝐾22(𝑠𝑠) = 𝑆𝑆2(𝑠𝑠)

𝑅𝑅2(𝑠𝑠) = 𝑠𝑠 − (𝐴𝐴22 − 𝐿𝐿22)
(𝜏𝜏2𝑠𝑠 + 1)  

(17) 

where 𝑠𝑠1 and 𝑠𝑠2 are the secondary residuals. We can see from 
(17) that 𝐾𝐾11 and 𝐾𝐾22 are two filters, the inputs of which are 
primary residuals 𝑟𝑟1 and 𝑟𝑟2 and the outputs are essentially 
estimates of 𝑓𝑓1 and 𝑓𝑓2. The parameters 𝜏𝜏1 and 𝜏𝜏2 are design 
parameters chosen to make the filter structure proper. 

 
Figure 3: Current and Voltage response of scaled version of 

UDDS drive-cycle 

 

4. SIMULATION STUDIES 

In this section, we present a simulation study to verify the 
effectiveness of the proposed scheme. The battery model 
parameters are taken from [17]. First, a nominal case has 
been shown with a current profile derived from scaled 
version of UDDS drive cycle (Fig. 3). The core and surface 
temperature estimation performance and primary residuals 
are shown in Fig. 4. Note that the primary residuals converge 
to zero as there are no faults. 

 

 
Figure 4: Core and surface temperature estimation 

performance in nominal case (no faults). 

 
Figure 5: Residual responses in case of ∆𝑅𝑅𝑢𝑢 fault. 
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𝑥̇̃𝑥1 = (𝐴𝐴11 − 𝐿𝐿11𝛼𝛼2)𝑥̃𝑥1 + 𝑓𝑓1
𝑥̇̃𝑥2 = (𝐴𝐴22 − 𝐿𝐿22)𝑥̃𝑥2 + 𝑓𝑓2  (14) 

Now, we define the two primary residuals as 𝑟𝑟1 = 𝑦̃𝑦1 and 
𝑟𝑟2 = 𝑦̃𝑦2 and their dynamics can be written as: 

𝑦̇̃𝑦1 = 𝛼𝛼2𝑥̇̃𝑥1 = (𝐴𝐴11 − 𝐿𝐿11𝛼𝛼2)𝑦̃𝑦1 + 𝛼𝛼2𝑓𝑓1
𝑦̇̃𝑦2 = 𝑥̇̃𝑥2 = (𝐴𝐴22 − 𝐿𝐿22)𝑥̃𝑥2 + 𝑓𝑓2  (15) 

We can see from (15) that in presence of faults 𝑓𝑓1 and 𝑓𝑓2, the 
residuals 𝑟𝑟1 and 𝑟𝑟2 will be nonzero respectively. This satisfies 
the fault signature in Table 2. 

2.1 Secondary Residual Generation 

Based on (15), we generate the secondary residuals which 
serve as estimates of the faults 𝑓𝑓1 and 𝑓𝑓2. From (15), the 
transfer function from the faults to primary residuals can be 
written as: 

𝐺𝐺11(𝑠𝑠) = 𝑅𝑅1(𝑠𝑠)
𝐹𝐹1(𝑠𝑠) = 𝛼𝛼2

𝑠𝑠 − (𝐴𝐴11 − 𝐿𝐿11𝛼𝛼2)
𝐺𝐺22(𝑠𝑠) = 𝑅𝑅2(𝑠𝑠)

𝐹𝐹2(𝑠𝑠) = 1
𝑠𝑠 − (𝐴𝐴22 − 𝐿𝐿22) 

(16) 

where 𝑅𝑅1(𝑠𝑠), 𝑅𝑅2(𝑠𝑠), 𝐹𝐹1(𝑠𝑠) and 𝐹𝐹2(𝑠𝑠) are Laplace transforms 
of 𝑟𝑟1, 𝑟𝑟2, 𝑓𝑓1 and 𝑓𝑓2, respectively. Based on (16), we can write 
that: 

𝐾𝐾11(𝑠𝑠) = 𝑆𝑆1(𝑠𝑠)
𝑅𝑅1(𝑠𝑠) = 𝑠𝑠 − (𝐴𝐴11 − 𝐿𝐿11𝛼𝛼2)

𝛼𝛼2(𝜏𝜏1𝑠𝑠 + 1)
𝐾𝐾22(𝑠𝑠) = 𝑆𝑆2(𝑠𝑠)

𝑅𝑅2(𝑠𝑠) = 𝑠𝑠 − (𝐴𝐴22 − 𝐿𝐿22)
(𝜏𝜏2𝑠𝑠 + 1)  

(17) 

where 𝑠𝑠1 and 𝑠𝑠2 are the secondary residuals. We can see from 
(17) that 𝐾𝐾11 and 𝐾𝐾22 are two filters, the inputs of which are 
primary residuals 𝑟𝑟1 and 𝑟𝑟2 and the outputs are essentially 
estimates of 𝑓𝑓1 and 𝑓𝑓2. The parameters 𝜏𝜏1 and 𝜏𝜏2 are design 
parameters chosen to make the filter structure proper. 

 
Figure 3: Current and Voltage response of scaled version of 

UDDS drive-cycle 

 

4. SIMULATION STUDIES 

In this section, we present a simulation study to verify the 
effectiveness of the proposed scheme. The battery model 
parameters are taken from [17]. First, a nominal case has 
been shown with a current profile derived from scaled 
version of UDDS drive cycle (Fig. 3). The core and surface 
temperature estimation performance and primary residuals 
are shown in Fig. 4. Note that the primary residuals converge 
to zero as there are no faults. 

 

 
Figure 4: Core and surface temperature estimation 

performance in nominal case (no faults). 

 
Figure 5: Residual responses in case of ∆𝑅𝑅𝑢𝑢 fault. 
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Next, we consider ∆𝑅𝑅𝑢𝑢 fault case. A step change as ∆𝑅𝑅𝑢𝑢 =
0.3𝑅𝑅𝑢𝑢 is injected at t=500 sec. The core and surface 
temperature estimation performance along with the residual is 
shown in Fig. 5. As expected, 𝑟𝑟2 goes nonzero and 𝑟𝑟1 remains 
zero as this fault generates a condition 𝑓𝑓1 = 0, 𝑓𝑓2 ≠ 0. 
Further, the effect of the fault is estimated by secondary 
residual  𝑠𝑠2. 

In the next study, we consider ∆𝑢𝑢 fault case. A step change as 
∆𝑢𝑢 is injected at t=500 sec. The core and surface temperature 
estimation performance along with the residual is shown in 
Fig. 6. As expected, 𝑟𝑟1 goes nonzero and 𝑟𝑟2 remains zero as 
this fault generates a condition  𝑓𝑓1 ≠ 0, 𝑓𝑓2 = 0. Further, the 
effect of the fault is estimated by secondary residual 𝑠𝑠1. 

In the final case, we consider ∆𝑅𝑅𝑐𝑐 as the fault. A step change 
as ∆𝑅𝑅𝑐𝑐 = 0.2𝑅𝑅𝑐𝑐  is injected at t=500 sec. The core and 
surface temperature estimation performance along with the 
residual is shown in Fig. 7. As expected, both 𝑟𝑟1 and 𝑟𝑟2 goes 
nonzero as this fault generates a condition  𝑓𝑓1 ≠ 0, 𝑓𝑓2 ≠ 0. 
Further, the effect of the fault is estimated by secondary 
residuals 𝑠𝑠1 and 𝑠𝑠2. 

 
Figure 6: Residual responses in case of ∆𝑢𝑢 fault. 

 
Figure 7: Residual responses in case of ∆𝑅𝑅𝑐𝑐 fault. 

5.  CONCLUSION 

In this paper, Lithium-ion battery is modelled via equivalent 
circuit model and a two-state thermal model is considered to 
capture thermal dynamics of the battery. A diagnosis scheme 
based on Luenberger observer has been proposed to detect 
and isolate thermal runaway, convective cooling resistance 
fault, and internal thermal resistance fault, as three possible 
internal thermal failures. In addition, the secondary residuals 
are derived using designed filters and primary residuals to 
estimate the additive effect of the possible faults in the 
battery. 
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