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Ensuring safety and reliability is a critical objective of advanced Battery Management Systems (BMSs) for
Li-ion batteries. In order to achieve this objective, advanced BMS must implement diagnostic algorithms
that are capable of diagnosing several battery faults. One set of such critical faults in Li-ion batteries are
thermal faults which can be potentially catastrophic. In this paper, a diagnostic algorithm is presented
that diagnoses thermal faults in Lithium-ion batteries. The algorithm is based on a two-state thermal
model describing the dynamics of the surface and the core temperature of a battery cell. The residual
signals for fault detection are generated by nonlinear observers with measured surface temperature and
a reconstructed core temperature feedback. Furthermore, an adaptive threshold generator is designed to
suppress the effect of modelling uncertainties. The residuals are then compared with these adaptive
thresholds to evaluate the occurrence of faults. Simulation and experimental studies are presented to
illustrate the effectiveness of the proposed scheme.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Li-ion batteries are becoming the dominant energy storage solu-
tions in electric and hybrid electric vehicle applications due to their
high specific power and energy as well as relatively longer life. For
such demanding applications, these batteries must perform reliably
and pose no safety threats. One such issue that greatly impacts the
safety, stability, performance and life of a Li-ion battery is thermal
behaviour. There are many reported instances of thermal runaway in
Li-ion batteries leading to fires, for example, in Wang et al. (2012).
Temperature imbalances among multiple cells in a battery pack
could also greatly influence the aging behaviour of the battery, as
reported in Bandhauer, Garimella, and Fuller (2011). Therefore,
thermal management strategies are essential to mitigate these effects
and avoid catastrophic failures of the battery. In line with these
needs, in this paper, a model-based real time diagnostics scheme is
proposed for the detection and isolation of a set of faults that affect
surface and core temperature dynamics of the battery.

Numerous thermal modelling studies have been conducted on
rechargeable Li-ion batteries. The objectives of the proposed
),
u (S. Tatipamula),
u (S. Mohon),
(P. Pisu).
thermal models fall under two categories: 1) to ensure proper
thermal management system design under normal (faultless) op-
erating conditions, and 2) to provide predictive capability for
thermal abuse responses (see Doughty, Butler, Jungst, & Roth,
2002). Comprehensive thermal models developed in Kim, Pesaran,
and Spotnitz (2007); Guo et al. (2010); Maleki and Shamsuri
(2003); Hallaj, Maleki, Hong, and Selman (1999) provide a more
accurate understanding of the cell behaviour under abuse condi-
tions like overheating and external short circuits. Since these 3D
models require high computational capabilities, currently their use
in battery management systems (BMS) may only be viable for
industrial/stationary storage applications (see Chen, Wan, & Wang,
2005). In vehicle applications, simple one-dimensional thermal
models that compute the average lumped temperature of the cell
are viable for real-time BMS implementations. For example, one
such model is presented in Smith and Wang (2006). As a trade-off
between the comprehensive and simplified modelling approaches,
a two-state thermal model that predicts the surface and core
temperature of a battery cell has also been proposed in Doughty
et al. (2002) and Park and Jaura (2003). These two-state models
provide more information than the lumped model while retaining
computational simplicity. In this paper the two-state thermal
model is adopted to design and analyze our proposed thermal
fault diagnosis scheme.

In the literature, several estimation techniques are proposed for
Li-ion batteries. Two main categories of such estimation schemes
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are: 1) electrochemical model-based approaches: Dey, Ayalew, and
Pisu (2015a); Dey, Ayalew, and Pisu (2015b); Klein et al. (2013);
Moura, Chaturvedi, and Krstic (2012) and, 2) equivalent circuit
model-based approaches: He, Xiong, Zhang, Sun, and Fan (2011),
Charkhgard and Farrokhi (2010), Hu and Yurkovich (2012), Kim
(2006), Plett (2004), and Gould, Bingham, Stone, and Bentley
(2008). However, fewer works address the temperature estimation
problem of Li-ion batteries. An adaptive observer for core tem-
perature estimation was presented in Lin et al. (2013). A battery
cell temperature estimation algorithm was presented in Debert,
Colin, Bloch, and Chamaillard (2013) based on Linear Parameter
Varying (LPV) thermal model and a polytopic observer. Richard-
son, Ireland, and Howey (2014) presented a method for battery
internal temperature estimation by combining impedance and
surface temperature measurements. A Kalman filter-based ap-
proach is presented in Kim, Mohan, Siegel, Stefanopoulou, and
Ding (2014) to estimate the radial temperature distribution of a
cylindrical battery cell under unknown cooling conditions. Papa-
zoglou, Longo, Auger, and Assadian (2014) and Feig, Billitteri,
Longo, and Auger (2014) have also explored Kalman filtering
techniques for battery temperature estimation. The correlation
between thermal imbalance and cell degradation has been studied
in Merla et al. (2016).

Compared to the estimation problems, battery real-time diag-
nostics problems are even less explored or reported in the litera-
ture. The reported works are mainly concerned with sensor and/or
actuator fault detection (see Marcicki, Onori, & Rizzoni, 2010; Liu,
Ahmed, Rizzoni, & He, 2014; Lombardi, Zarudniev, Lesecq, & Bac-
quet, 2014; Dey, Mohon, Pisu, & Ayalew, 2015c); Singh, Izadian,
and Anwar (2013) presented an algorithm for detecting over-
charge and over-discharge faults. An electrochemical fault diag-
nostics scheme has been recently presented in Dey and Ayalew
(2015); Marcicki et al. (2010); Liu et al. (2014) and Biron, Pisu and
Ayalew (2015) used a one-state lumped thermal model for fault
detection. However, none of these approaches exploit the two-
state thermal model which can potentially capture more in-
formation on thermal dynamics including the core temperature.
Therefore, these existing approaches may not be able to detect and
isolate internal thermal faults. The main contribution of the pre-
sent paper is that it proposes a two-state thermal model-based
diagnostic scheme that takes the core temperature dynamics into
account. The novelty of the proposed diagnostic scheme with re-
spect to the existing thermal diagnostic schemes (Marcicki et al.,
2010 & Liu et al., 2014), lies in its capability of detecting and iso-
lating two sets of faults: faults that affect the core temperature
dynamics (e.g. thermal runaway fault) and faults that affect the
surface temperature dynamics (e.g. convection fault). Note that,
this work explores the problem of thermal fault diagnosis which is
different from the previous works of present authors that explores
electrochemical state estimation (Dey, Ayalew, & Pisu, 2015),
combined state and parameter estimation (Dey, Ayalew, & Pisu,
2015), sensor fault diagnosis (Dey, Mohon, Pisu, & Ayalew, 2015)
and, electrochemical fault diagnosis (Dey & Ayalew, 2015)
problems.

Model-based fault diagnosis of dynamic systems has been an
active research area for several decades and explored for various
applications. For some recent results in this area, please refer to
Gao, Ding, and Cecati (2015). There are some existing estimation-
based approaches for fault diagnosis, e.g. sliding mode observer
(Edwards, Spurgeon, & Patton, 2000), Kalman filter (Alessandri,
Caccia, & Veruggio, 1999), ∞H filter (Zhong, Ding, Lam, & Wang,
2003). Essentially, these approaches utilise output estimation er-
rors as residual signals, which are used for fault diagnosis. Typi-
cally, a fault is diagnosed if the residual is non-zero. However, the
sliding mode observers may be ineffective in diagnosing incipient
faults due to chattering problems. The ∞H filter also suffers from
similar problem as it might mask the incipient faults. The Kalman
filter based approaches generally assume a Gaussian probability
distribution of the uncertainties which might not be true in
practical applications. Therefore, a Lyapunov-based nonlinear ob-
server approach is adopted in this work which does not suffer
from the aforementioned issues.

One of the main challenges in model-based diagnostics arises
from the uncertainties. Due to modelling, parametric and mea-
surement uncertainties, the residuals will be nonzero even in no
fault conditions. Several methods have been proposed to deal with
fault diagnosis problem in presence of modelling uncertainties,
e.g. sliding mode observers (Yan & Edwards, 2007), adaptive esti-
mators (Patton & Klinkhieo, 2009; Patton, Putra, & Klinkhieo,
2010). However, most of these approaches require assumptions on
the structures of distribution matrices of the faults and un-
certainties which may not always be met in practice. On the other
hand, some diagnostic approaches have also been proposed to deal
with modelling uncertainties without any assumptions on the
distribution matrices. One of such approaches is the use of non-
zero thresholds (Emami-Naeini, Akhter, & Rock, 1988). Essentially,
the residuals are compared against some non-zero thresholds to
conclude the occurrence of the faults. There are two types of
thresholds that are used in literature, fixed thresholds (e.g. Ema-
mi-Naeini et al., 1988) and adaptive thresholds (e.g. Zhang, Poly-
carpou, & Parisini, 2002 in time domain, Ding & Frank, 1991 in
frequency domain). In case of dynamic uncertainties, fixed
thresholds may need to be set at much higher levels therefore
potentially leading to higher miss detection rates whereas low-
ering fixed thresholds might increase the false alarm rate. Further,
fixed thresholds might not be effective for some systems where
the operating conditions, control signals and uncertainties have
significant variations. In such cases, adaptive thresholds might be
effective in improving the robustness of the diagnostic scheme.
Essentially, the adaptive threshold generator generates a dynamic
threshold based on the nominal system dynamics and known
bounds of the uncertainties. For implementation purpose, these
approaches utilise filters that provide a dynamic threshold with
which the observer output error (residual signal) is compared to
diagnose the faults. In this paper, we adopt the adaptive threshold
approach in conjunction with the observers to design the diag-
nostic scheme.

In this paper, the preliminary work on model-based thermal
fault diagnosis that is presented in the brief conference paper (Dey
et al., 2015) is extended by: 1) considering a more comprehensive
battery cell model including essential nonlinearities and in-
corporating a nonlinear observer design approach to deal with the
nonlinearities, 2) considering temperature dependency of the in-
ternal resistance of the battery cell, 3) considering the effect of
modelling uncertainties and designing an adaptive threshold
generator to suppress their effects in the diagnostic scheme, 4)
including some experimental results. An observer-based approach
for model-based diagnosis is adopted here (Gertler, 1998). A
nonlinear observer is designed using a two-state thermal model
and voltage and temperature measurements. The output errors of
the observer are used as the primary residuals, which have the
idealised property of being zero in a non-faulty condition and non-
zero otherwise. However, due to the presence of modelling un-
certainties, the residuals are generally non-zero even in the ab-
sence of the faults. To deal with this issue, an adaptive threshold
generator is used. The adaptive threshold generator is essentially a
filter that is designed based on the nominal error dynamics of the
observer and known uncertainty bounds (Zhang et al., 2002). The
adaptive threshold generator provides dynamic thresholds to
which the residuals are compared. If the residual crosses the
threshold a fault is declared. Simulation and experimental studies
are provided to validate the proposed algorithm.
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The rest of the paper is organised as follows. Section 2 de-
scribes the thermal model used for this study. Section 3 introduces
the diagnostic problem and explains the fault diagnosis scheme.
Section 4 presents simulation and experimental studies and Sec-
tion 5 concludes the paper.
2. Thermal modelling of Lithium-ion battery

A radial thermal model (see Doughty et al., 2002) is chosen for
the cylindrical Li-ion battery cell as depicted in Fig. 1. It models a
heat source at the core of the battery and two temperature states
(the core temperature Tc and the surface temperature Ts) given as

̇ =
−

+
( )

C T
T T

R
I R

1c c
s c

c

2

̇ =−
−

+
−

( )
C T

T T
R

T T

R 2s s
s c

c

f s

u

where I is the current, R is the internal (electrical) resistance of the
battery, Rc is the thermal resistance between the battery core and
battery surface, Ru is the convective resistance between the battery
surface and the surrounding air, Cc is the heat capacity of internal
battery material, Cs is the heat capacity of the battery material at
the surface, and Tf is the surrounding air temperature.

The battery electrical behaviour is included in a zero-order
equivalent electrical circuit model with open circuit voltage E0 and
internal resistance R connected in series. From Kirchhoff’s law the
electrical equation is given by

= − ( )V E IR 30

where V is the battery's terminal voltage. Likewise, the state of
charge (SOC) dynamics of the battery is defined as

̇ =− ( )SOC I Q/ 4

where Q is the battery capacity. For this paper, the E0 is modelled
as a function of SOC as

α α α= + + ( )E SOC SOC 50 0 1 2
2

where α0, α1 and α2 are constant parameters that can be de-
termined by offline identification techniques. Further, the internal
resistance of the battery is modelled as a linearly parameterised
function of SOC and core temperature Tc.

β β β= + + ( )R SOC T 6c0 1 2
Fig. 1. Battery lumped thermal model.
where β0, β1 and β2 are constant parameters that can be de-
termined a priori by offline identification techniques or via online
estimation schemes (see Lin et al., 2013). The experimental set up
for the identification will be detailed in Section 4.1.

Remark 1: Note that, linear dependencies of R on SOC and Tc are
assumed to simplify the observer design. However, the proposed
framework may also be extended for nonlinear dependencies.

Sources of uncertainties: Note that, in practice there are sev-
eral sources of uncertainties that affect the performance of the
proposed diagnostic scheme as mentioned below:

Modelling uncertainties: The main source of modelling un-
certainty arises from the heat generation model, which does not
include the effect of different electrochemical reactions (Band-
hauer et al., 2011).

Measurement uncertainties: This includes measurement
noises from the measured variables: voltage, current and surface
temperature.

Parametric uncertainties: The main parametric uncertainty
arises from battery aging (Bandhauer et al., 2011). The internal
resistance ( R) and the battery capacity ( Q ) are the two main
parameters that change with battery age. Typically, the capacity
decreases and the resistance increases. Furthermore, the thermal
parameters (Cc and Cs) may also deviate due to aging. These aging
effects are very difficult to capture in the nominal model.
3. Fault diagnosis scheme

Based on the nominal thermal dynamics (1) and (2), a faulty
model of the battery is defined as
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where f1 and f2 represent the faults in the core temperature dy-
namics and surface temperature dynamics, respectively. We con-
sider three different types of physical faults in this study.

Fault 1: Convective cooling resistance fault, which is re-
presented by a significant deviation in the parameter Ru from its
nominal value.

Fault 2: Internal thermal resistance fault, which is modelled by
change in the parameter Rc from its nominal value.

Fault 3: Heat generation fault, which is modelled by an addi-
tional heat-generation term that contributes to the core tem-
perature rise in the battery. Note that, when the additive heat
generation fault is of high amplitude with abrupt change then it
captures the effect of thermal runaway.

The mapping from these physical faults to f fand1 2 is given in
Table 1. This mapping and the additive description of the faults in
(7) and (8) will be useful for designing the diagnostic scheme.
Essentially, we concentrate on detecting, isolating and estimating
f fand1 2 which is equivalent to detecting and isolating Faults 1,
2 and 3 via Table 1.
Table 1
Fault mapping.

Actual faults Fault map

Fault 1 = ≠f f0, 01 2

Fault 2 ≠ ≠f f0, 01 2

Fault 3 ≠ =f f0, 01 2



Fig. 2. Diagnostic scheme.
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The diagnostic scheme is shown in Fig. 2.

3.1. Diagnostic scheme

Considering the nominal battery model in (1) and (2), the state-
space representation can be written as

̇ = + + ( ) ( )x a x a x b u f SOC x, 9R1 11 1 12 2 11 1
2

1
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Now, using the terminal voltage expression (3), open circuit

voltage expression (5) and internal resistance expression (6), the
internal temperature can be written as

β β β

α α α

β β

β

=
−

⇒ + +

=
+ + −

⇒

=
− ( + )

( )

α α α+ + −

R
E V

I
SOC T

SOC SOC V
I

T

SOC

11

c

c

SOC SOC V
I

0
0 1 2

0 1 2
2

0 1

2

0 1 2
2

With the available measurements of current and voltage, and
assuming that the SOC is available via Coulomb counting (with
available accurate enough current measurement) using (4), the
internal temperature can be reconstructed as above and used as an
output of the system. Therefore, the following outputs are defined

= ( )y x 121 1

= ( )y x 132 2

where y1 is the reconstructed core temperature (Tc) and y2 is the
measured surface temperature (Ts).

Remark 2: In batteries, there is no direct measurement of the
core temperature (Tc). However, to isolate the faults f1 and f2, core
temperature information is required in addition to the surface
temperature (Ts). To resolve this issue, the physical dependence of
the internal resistance (R) on the core temperature (Tc) is utilised
to reconstruct internal core temperature information from the
measured quantities.

Remark 3: Note that at the input operating point *=u 01 , the
internal resistance information will not show up in the terminal
voltage and hence Tc cannot be reconstructed. Essentially, one set
of information from the plant is lost. Therefore, the scheme cannot
isolate different faults at this operating point. However, the de-
tection capability of the scheme remains intact.

3.1.1. Observer design for primary residual generation
A nonlinear observer is designed to generate the primary re-

siduals. Based on the plant model and measurements (9)–(13), the
observer structure is given by

( )^̇ = ^ + ^ + ^ + ̃ + ̃ ( )x a x a x b u f SOC x L y L y, 14R1 11 1 12 2 11 1
2

1 11 1 12 2

^̇ = ^ + ^ + + ̃ + ̃ ( )x a x a x b u L y L y 152 21 1 22 2 22 2 21 1 22 2

̃ = ̃ ( )y x 161 1

̃ = ̃ ( )y x 172 2

where ̃ = − ^x x x1 1 1, ̃ = − ^x x x2 2 2 and SOC is determined via coulomb
counting. Next, we state the main result of the observer design.

Main result: Consider the observer dynamics (14)–(17) and the
plant model (9)–(13). Furthermore, consider that the observer
gains satisfy the following conditions: =L a12 12, =L a21 21, L2240

and β>L b u11 11 2 1
2 for all admissible values of u1. Then the observer

error ̃x1 and ̃x2 will asymptotically converge to zero as → ∞t under
no fault condition (i.e. =f f, 01 2 ). Under faulty condition, (i.e.

≠f f, 01 2 ), the observer error ̃x1 and ̃x2 will be bounded to some non-
zero values depending on the size of the faults and the observer
gains.

Next, we will analyze the observer error dynamics under no
fault and faulty conditions via Lyapunov's direct method.

Convergence analysis of the observer error under no fault
condition: Now, under nominal condition (no fault case, i.e.

=f f, 01 2 ), subtracting (14)–(17) from (9)–(13), the dynamics of the
observer error is

β̃ ̇ = ̃ + ̃ + ̃ − ̃ − ̃ ( )x a x a x b u x L y L y 181 11 1 12 2 11 2 1
2

1 11 1 12 2

̃ ̇ = ̃ + ̃ − ̃ − ̃ ( )x a x a x L y L y 192 21 1 22 2 21 1 22 2

To analyze the convergence of the observer error, consider the
following Lyapunov function candidate

( )= ̃ + ̃
( )V x x

1
2 201

2
2

2

Therefore, the derivative of the Lyapunov function candidate
can be written as

β̇ = ̃ ̃ ̇ + ̃ ̃ ̇ = ̃ + ̃ ̃ + ̃ − ̃ − ̃ ̃

+ ̃ ̃ + ̃ − ̃ ̃ − ̃

V x x x x a x a x x b u x L x L x x

a x x a x L x x L x

1 1 2 2 11 1
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12 1 2 11 2 1
2
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2

11 1
2

12 1 2

21 1 2 22 2
2

21 1 2 22 2
2

Next, we determine the conditions on the observer gains for
which we have ̇<V 0 based on the above equation. Note that, ̇<V 0
implies the asymptotic convergence of the observer error ̃x1 and ̃x2

to zero as → ∞t . With the choice of =L a12 12 and =L a21 21, ̇V be-
comes
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{ } { }β̇ = + − ̃ + − ̃ ( )V a b u L x a L x 2111 11 2 1
2

11 1

2
22 22 2

2

Note that a11, a22o0 from physical properties of the battery.
Now, choosing L2240 and L11 such that β>L b u11 11 2 1

2 for all ad-
missible values of u1, the following can be written

̇=− ̃ − ̃ ( )V m x m x 221 1
2

2 2
2

where { }β=− + − >m a b u L 01 11 11 2 1
2

11 and { }=− − >m a L 02 22 22 . For

design, β= + +L m a b u11 1 11 11 2 1
2 can be chosen where >m 01 is a

constant design parameter of the user’s choice. Therefore, ̇<V 0 and
the state estimation error ̃x1 and ̃x2 achieve asymptotic con-
vergence to zero as →∞t under no fault. Note that, high values of
L11 and L22 will improve the convergence time, but also amplify the
measurement noise at the same time. Therefore, the choice of L11
(or m1) and L22 should be made keeping this trade-off in mind.

Remark 4: As discussed before, the core temperature cannot be
reconstructed from the terminal voltage measurement at the op-
erating point *=u 01 . Therefore, the output error injection must be
made zero by choosing *L11 , *L21 =0 only at that operating point (or
practically, in its vicinity).

Convergence analysis of the observer error under faults:
Now, under faults (i.e. ≠f f, 01 2 ), subtracting (14)–(17) from (9)–(13),
the dynamics of the observer error is

{ }β̃ ̇ = ̃ + ̃ + ̃ + − ̃ − ̃ ( )x a x a x b u x f L y L y 231 11 1 12 2 11 1
2

2 1 1 11 1 12 2

̃ ̇ = ̃ + ̃ + + − ̃ − ̃ ( )x a x a x b u f L y L y 242 21 1 22 2 22 2 2 21 1 22 2

To analyze the convergence of the observer error under faults,
we choose the same Lyapunov function candidate and same ob-
server gains as the no fault case. Then, the derivative of the Lya-
punov function candidate can be written as

̇=− ̃ − ̃ + ̃ + ̃ ( )V m x m x x f x f 251 1
2

2 2
2

1 1 2 2

Using the bounding argument ≤ab a b , (25) can be bounded as

{ } { }
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f
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f
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2
, ̇V eventually becomes positive and V

does not decrease anymore. Therefore, it can be concluded that V
will stay in the error space in some ball of finite radius. Conse-
quently, the state estimation errors remain bounded within a ball

of radius determined by
f

m
1

1
and

f

m
2

2
. Therefore, it can be concluded

that:
≠ = > ̃ ≠f y0 01 1 and ≠ = > ̃ ≠f y0 02 2 .

Based on the above discussion, the residuals are chosen as:
= ̃r y1 1 and = ̃r y2 2 along with the following fault signature table for

the diagnostic scheme (Table 2).
Note: The effect of the measurement noise can be minimised by

the choice of the observer gains L11 and L22. Lower values of these
Table 2
Fault signature table (‘1’ represents nonzero and ‘0’ represents zero).

Fault Residuals

r1 r2

f1 1 0

f2 0 1
gains would result in slower observer dynamics which in turn
attenuates the high frequency measurement noise. However, for a
detailed design of observer gains with specific objective of at-
tenuation of measurement noise, one may refer to Gao and Wang
(2006).

In the next section, we will discuss how to minimise the effect
of the modelling and parametric uncertainties.

3.1.2. Adaptive threshold design for residual evaluation
In the previous analysis, the residuals ̃y1 and ̃y2 are shown to be

zero in the absence of faults. However, due to modelling, para-
metric and measurement uncertainties as discussed above, the
residuals will be nonzero even in no fault conditions. In this paper,
the adaptive threshold approach outlined in Zhang et al. (2002) is
adopted. Essentially, the residual signals are compared to these
adaptive thresholds to diagnose the faults. To start with, the
thermal model with additive uncertainties can be written as

( )̇ = + + + ( )x a x a x b u f SOC x n, 26R1 11 1 12 2 11 1
2

1 1

̇ = + + + ( )x a x a x b u n 272 21 1 22 2 22 2 2

where n1 and n2 are the model uncertainties (in the absence of
faults). Note that, the uncertainties can be input and/or state de-
pendent and treated here as unknown exogenous inputs. In the
following discussion, the following form of the uncertainties is
assumed

= + + + ( )n k x k x k u k 281 11 1 12 2 13 1 14

= + + + ( )n k x k x k u k 292 21 1 22 2 23 2 24

where kij are unknown coefficients whose bounds are known,

≤ −k kij ij max. Note that a nonlinear parameterisation is also pos-
sible for the uncertainty expressions. However, for the con-
venience of design, the above form is chosen where the errors of
this approximation and linearization are represented by k14 and
k24.

Remark 5: The uncertainty expressions in (28) and (29) are
derived considering the modelling and parametric uncertainties in
the nonlinear model (1) and (2). The main sources of uncertainties
are: deviation of thermal parameters ( Cs and Cc) and electrical
parameters (R and Q ); uncertainties in the ambient temperature
(Tf ); other unmodeled dynamics. The nominal state-space model
along with these uncertainties can be written as:

( ) ( )+ ∆ ̇ =
−

+ +∆ + ∆
( )

C C T
T T

R
I f SOC SOC T,

30c c c
s c

c
R c

2
1

( )( )+ ∆ ̇=−
−

+
+ ∆ −

+ ∆
( )

C C T
T T

R

T T T

R 31s s s
s c

c

f f s

u
2

where ∆Cs, ∆Tf , ∆Cc and ∆SOC are uncertainties and ∆1 and ∆2 are
the unmodelled dynamics. Comparing (30) and (31) with (28) and
(29), it can be seen that the uncertainty in Cs is included in k21, k22,
and k23; uncertainties in Cc is included in k11, k12 and k13; un-
certainties in R and SOC (due to uncertainty in battery capacity Q )
is included in k13; uncertainties in Tf is included in k23. Further-
more, unmodelled dynamics are captured in k14 and k24.

Remark 6: The terms k u13 1 and k u23 2 include the effects of dis-
turbances in input current and ambient temperature. Furthermore,
the terms k14 and k24 include the effects of exogenous input dis-
turbances in the system. Therefore, the effect of input disturbances
is taken into account via the expressions of uncertainties in (28)



Fig. 3. Experimental setup.
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and (29). In the following, the details of how to decouple the effect
of such uncertainties and hence the input disturbances from the
faults are shown. However, active attenuation of input dis-
turbances is not considered as a design goal in this approach. For
active attenuation of input disturbances, one may refer to Gao and
Wang (2006).

Subtracting the observer (14)–(17) from the plant model (26)
and (27), the observer error dynamics in the presence of un-
certainties and under no-fault condition (i.e. =f f, 01 2 ), can be
written as

̃ ̇ = − ̃ + ( )x m x n 321 1 1 1

̃ ̇ = − ̃ + ( )x m x n 332 2 2 2

with m1 and m2 defined after (22). Considering n1 and n2 as
inputs to the error dynamic system (32) and (33), the solution of
the state-space Eqs. (32) and (33) can be written as:

∫( ) ( ) τ τ̃ = ̃ + ( ) ( )
τ− − ( − )x t x e e n d0 34

m t
t

m t
1 1

0
1

1 1

∫( ) ( ) τ τ̃ = ̃ + ( )
( )

τ− − ( − )x t x e e n d0
35

m t
t

m t
2 2

0

2
2 2

Next, using the bounding argument ≤ ≤ab ab a b on the pro-
duct terms inside the integrals of (34) and (35), we can write

∫( ) ( ) τ τ̃ ≤ ̃ + ( ) ( )
τ− − ( − )x t x e e n d0 36

m t
t

m t
1 1

0
1

1 1

∫( ) ( ) τ τ̃ ≤ ̃ + ( )
( )

τ− − ( − )x t x e e n d0
37

m t
t

m t
2 2

0

2
2 2

Note that, the term > ∀ >−e t0 0m t1 . Hence, we can write that
=− −e em t m t1 1 . Therefore, (36) and (37) can be re-written as

∫( ) ( ) τ τ̃ ≤ ̃ + ( ) ( )
τ− − ( − )x t x e e n d0 38

m t
t

m t
1 1

0
1

1 1

∫( ) ( ) τ τ̃ ≤ ̃ + ( )
( )

τ− − ( − )x t x e e n d0
39

m t
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m t
2 2

0

2
2 2

Next, using the bounding argument ≤ab a b , the bounds of
the uncertain terms can be written as

≤ + + + ( )n k x k x k u k 401 11 1 12 2 13 1 14

≤ + + + ( )n k x k x k u k 412 21 1 22 2 23 1 24

Furthermore, using the coefficient bounds ≤ −k kij ij max, (40)
and (41) can be written as

≤ + + + ( )− − − −n k x k x k u k 42max max max max1 11 1 12 2 13 1 14

≤ + + + ( )− − − −n k x k x k u k 43max max max max2 21 1 22 2 23 1 24

Next, applying the bound (42) into (38), we can write

{
}

∫
( ) ( )
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where ( )ε = ̃ −x e0 m t
10 1

1 and −r th1 is the adaptive threshold for the
residual = ̃ = ̃r y x1 1 1. The evolution Eq. (44) is equivalent to the
following filter dynamics for the adaptive threshold
( ) ( ) ( )̇ =− + + +

+ ( )

− − −

−

z m z k x t k x t k u t

k 45

max max max

max

11 1 11 11 1 12 2 13 1

14

ε= + ( )−r z 46th1 10 11

Similarly, applying the bound (43) into (39), a filter equation
can be derived that generates the adaptive threshold −r th2 for the
residual = ̃ = ̃r y x2 2 2.
4. Results and discussions

4.1. Identification of Lithium-ion battery electrical-thermal model

A LiCoO2/Graphite Li-ion battery (18,650 cylindrical cell) was
studied with two T-type thermocouples installed on it: one on the
surface and the other inserted into the battery core. The experi-
mental setup is shown in Fig. 3. The battery is discharged through
a programmable DC electronic load. The power supply supplies the
power to the signal conditioner circuit, which amplifies the signals
received from the thermocouples to the dSPACE ControlDesk data
acquisition software working with MATLAB/Simulink.

The parameters of the battery model (1)–(6) were identified
using nonlinear optimisation technique that fits the two-state
thermal model simulated data with the experimental data. The
experimental data was collected in the SOC range of 50–80%,
temperature range of 15–40 °C and current range up to 2 C. Cur-
rent profiles include constant currents, pulse discharge and ramp
currents. The parameters identified are listed in Table 3.

4.2. Simulation studies

Based on the identified model parameters, the battery model is
implemented in the MATLAB/Simulink platform. In this section,
the simulation studies are presented to show the effectiveness of
the proposed scheme. In the plant model, the uncertainties in the
form (28) and (29) are injected. The coefficients are arbitrarily
chosen and given in Table 4. The adaptive threshold generators are
provided with the bounds of these coefficients. The current profile
is a scaled and modified urban dynamometer drive cycle shown in
Fig. 4. The corresponding temperature, voltage and residual re-
sponses are shown in Fig. 5 under no fault condition. Note that, the
residual generator observers and the adaptive threshold generator



Table 3
Identified model parameters.

Parameter Unit Value

α0 V 2.28
α1 V 2.2
α2 V/K 0.001
β0 Ω 2.205

β1 Ω 0.01

β2 Ω/K 0.007

Cc J/K 18.6

Cs J/K 0.1

Rc K/W 150.6

Ru K/W 200

Table 4
Parameters of the uncertainty model in simulation.

Parameter Value

k11 −10 3

k12 × ( )− t2 10 sin 0.034

k13 −10 3

k14 ( )− −Gaussian distribution 10 , 103 5

k21 −10 3

k22 × ( )− t3 10 sin 0.0154

k23 0

k24 ( × )− −Gaussian distribution 3 10 , 103 4

Fig. 4. Current profile for simulation study.

Fig. 5. Voltage, temperature and residual responses under no fault condition.

Fig. 6. Residual responses under additive heat generation fault injected at 600 s.
The fault is an incipient fault with ramping rate × −1.25 10 4 W/s.
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filters are initialised with incorrect conditions and therefore it
takes certain time for these variables to converge (�250 s for re-
sidual 1 and �200 s for residual 2, in Fig. 5).

To test the effectiveness of the diagnostic scheme, three dif-
ferent faults have been injected in four separate cases.

Case 1: An additional heat generation term is injected at 600 s
and the corresponding residual responses are shown in Fig. 6. The
nature of the fault is chosen as a ramp type representing incipient
fault with ramping rate × −1. 25 10 4 W/s. Note that, this fault can
be represented by f1 in the battery's dynamics (7)-(8), and hence
affects only core temperature dynamics of the battery through (7).
Therefore, this particular fault, ≠f 01 , only impacts Residual 1 (r1). As
can be noted from Fig. 6, due to presence of fault, f1, Residual 1 (r1)
deviates from its nominal value and crosses the adaptive threshold
after about 150 s of fault injection. However, fault f1 does not show
up in Residual 2 (r2), and hence this residual does not surpass its
adaptive threshold.

Case 2: A fault is injected in the convective (cooling/heating)
coefficient resistance ( Ru) at 500 s. The nature of the fault is
chosen as ramp type representing an incipient fault with ramping
rate × −R0. 01 u nominal/s. Note that, this fault can be represented by f2
in the battery's dynamics (7)–(8), and hence only affects the sur-
face temperature dynamics via (8). Therefore, this particular fault
f2, will only show up in Residual 2 ( r2) according to Table 1. The



Fig. 7. Residual responses under convective cooling resistance fault injected at
500 s. The fault is a ramp-type fault with ramping rate 0.01�Ru–nominal/s.

Fig. 8. Residual responses under abrupt additive heat generation fault injected at
550 s. The fault is a step-like fault with amplitude of 0.025 W.

Fig. 9. Residual responses under abrupt internal thermal resistance fault injected at
400 s. The fault is a step-like fault with amplitude of 2�Ru–nominal.
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residual responses corresponding to this fault are shown in Fig. 7.
As can be inferred from Fig. 7, Residual 2 (r2) crosses the threshold
after =t sec580 , while Residual 1 ( r1) remains between its
threshold bounds.

Case 3: Another abrupt (step-like) additional heat generation
fault (which can be modelled as f1) is injected at 550 s and the
corresponding residual responses are shown in Fig. 8. The ampli-
tude of the fault is 0.025 W. As expected, Residual 1 (r1) crosses the
adaptive threshold after about 590 s whereas Residual 2 ( r2) re-
mains within the thresholds.

Case 4: A fault is injected in the internal thermal resistance (Rc)
at 400 s. The nature of the fault is chosen as abrupt step-like fault
with amplitude −R2 c nominal. Referring to the battery's thermal dy-
namics presented in (1)–(2), the internal thermal resistance ( Rc)
affects both core and surface temperature dynamics. Therefore, a
fault corresponding to this resistance, can be modelled as ≠f f, 01 2
in (7)–(8). Therefore, the effect of this internal thermal resistance
fault will show up in Residual 1 ( r1) and Residual 2 ( r2). The re-
sidual responses corresponding to this fault are shown in Fig. 9. As
it can be seen from Fig. 9, due to the presence of ≠f 01 and ≠f 02 ,
Residual 1 ( r1) and Residual 2 ( r2) cross their thresholds after a
certain time.

Next, the robustness of the diagnostic scheme is evaluated
under the presence of uncertainties. Two different sources of un-
certainties have been considered: parametric deviations and
measurement noise. To illustrate the performance of the scheme,
Case 3 has been chosen where a step-like abrupt additive heat
generation fault is injected at 550 s

Performance of the diagnostic scheme under parametric
uncertainties: In this case, some plant model parameters (R Q C, , s
and Cc) are deviated from their nominal values. The residual re-
sponses are shown in Fig. 10 under some of these parametric de-
viations. It is noted in the simulation studies that the diagnostic
scheme performs reasonably well up to 10% deviation in R, 15%



Fig. 10. Residual responses under parametric deviations with abrupt additive heat
generation fault injected at 550 s. The fault is a step-like fault with amplitude of
0.025 W.

Fig. 12. Residual responses under abrupt additive heat generation fault of different
amplitudes, injected at 550 s.
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deviation in Q , 12% deviation in Cc and 25% deviation in Cs. After
that, the performance of the diagnostic scheme degrades. One of
such instances is shown in Fig. 10 under 15% deviation in R.

Performance of the diagnostic scheme under measurement
uncertainties: In this case, measurement noises are injected into
the plant outputs (voltage, surface temperature and current). The
residual responses are shown in Fig. 11 in presence of different
levels of these measurement uncertainties. The noises are chosen
as zero mean Gaussian noise with a certain standard deviation. It
is noted in the simulation studies that the diagnostic scheme
performs reasonably well up to 5 mV, 25 mA and 1 °C voltage,
current and temperature measurement noise. After that, the
Fig. 11. Residual responses under measurement noises with abrupt additive heat
generation fault injected at 550 s. The fault is a step-like fault with amplitude of
0.025 W.
performance of the diagnostic scheme degrades. One of such in-
stances is shown in Fig. 11 under 50 mA current measurement
noise.

Minimum detectable faults and fault detection times: In this
section, the fault detection times and minimum detectable faults
are analysed via simulation studies. Two different types of abrupt
faults are considered for this purpose: additive heat generation
faults and convective cooling coefficient faults. The residual re-
sponses under additive heat generation faults with different am-
plitudes are shown in Fig. 12. It can be seen from Fig. 12 that the
fault detection times for 0.003 W, 0.015 W, 0.025 W and 0.035 W
faults are 168 s, 83 s, 40 s and 32 s, respectively. As expected, the
detection time becomes smaller as the fault amplitude is higher.
Further, the minimum detectable fault is 0.0025 Watt. In case of
thermal runaway, which is captured by the additive heat genera-
tion fault, the fault nature would be an abrupt type with high
amplitude. So, the detection time for thermal runaway would be
smaller. A similar study is done with respect to the convective
cooling coefficient faults and the corresponding residual responses
are shown in Fig. 13. It can be seen from Fig. 13 that the fault
detection times for 30%, 50%, 80% and 100% deviation of convective
cooling coefficient with respect to its nominal value are 600 s,
320 s, 107 s and 87 s, respectively. The minimum detectable fault
Fig. 13. Residual responses under abrupt convective cooling coefficient fault of
different amplitudes, injected at 550 s.



)

)

Fig. 14. Comparison of model voltage and temperature responses with measured
data under 1 C discharge current. The convective fault was injected at 500 s.
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size is 30% of the nominal value of the convective cooling
coefficient.

4.3. Experimental studies

An experimental study is presented here to understand the
effectiveness of the diagnostic scheme under a convection coeffi-
cient fault.

Fault Injection: The convective fault has been injected by
changing the exposure of the battery surface to its surroundings.
This was achieved by insulating the whole of the battery surface
with leather insulating material after a certain time during dis-
charge. The current profile under consideration was 1 C constant
discharge.

Note: The injection of thermal faults essentially creates thermal
imbalances in the battery and hence affects the battery health.
Therefore, it is extremely important to diagnose the thermal faults,
not only from a safety point of view, but also to increase battery
longevity. The details of how the thermal faults/imbalances de-
grade the battery health, can be found in Merla et al. (2016).

Offline Computation of the Uncertainty Bounds: To compute the
uncertainty bounds, the following steps are used:

– The uncertainty model is chosen in the form of Eqs. (28) and
(29).

– The open-loop model error is found by subtracting the open-
loop model outputs (surface and core temperatures) and the
corresponding measurements. The measurements were col-
lected in the SOC range of 50–80%, temperature range of 15–
40 °C and current range up to 2 C. Current profiles include
constant currents, pulse discharge and ramp currents.

– Consider (26)–(29) as an uncertain plant model and the follow-
ing as a nominal plant model (without uncertainty).

( )̇ = + + (x a x a x b u f SOC x, 47R1 11 1 12 2 11 1
2

1

̇ = + + (x a x a x b u 482 21 1 22 2 22 2

The dynamics of the open-loop model error are

̃ ̇ = ̃ + ̃ + ( )x a x a x n 491 11 1 12 2 1

̃ ̇ = ̃ + ̃ + ( )x a x a x n 502 21 1 22 2 2

From the physical properties of the system, the matrix
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11 12

21 22
is Hurwitz. Therefore, under asymptotic condition,

the error equation becomes:
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Note that, ̃x2 and ̃x2 are the open-loop model errors computed
in the previous step. Then, n1 and n2 can be calculated from (51).

– The upper bounds of n1 and n2 can be written as:

≤ = + + +

≤ = + + +

− − − −

− − − −

n n k x k x k u k n

n k x k x k u k

max max max max max

max max max max max

1 1 11 1 12 2 13 1 14 2

2 21 1 22 2 23 2 24

– The parameters −kij max are tuned to find n
max1 and n

max2 which
bounds the n1 and n2 under all conditions.

Open-loop Model Validation: The voltage and temperature re-
sponses from the nominal open-loop model are compared with the
measured experimental data under 1 C constant discharge and
shown in Fig. 14. Note that, the convective cooling fault was
injected at 500 s and hence the surface temperature started
deviating from its nominal rate at that point. However, the core
temperature and voltage remained unaffected. Therefore, there is
a mismatch in surface temperature between model data and
measured data after 500 s

Performance of the Diagnostic Scheme: Under the fault injection
at 500 s, the residual responses along with the adaptive thresholds
are shown in Fig. 15. The residual responses confirm the occur-
rence of the convection coefficient fault as the residual 1 ( r1) re-
mains within the threshold whereas the residual 2 (r2) crosses the
threshold. The fault detection time is 8 s. Note that, the adaptive
thresholds experience significant change after 500 s. This is be-
cause the adaptive thresholds are driven by measured surface
temperature which deviates significantly after the fault
occurrence.
5. Conclusion

In this paper, a fault diagnostic scheme has been presented to
diagnose thermal faults in the Lithium-ion battery cell. A two-state
thermal model capturing the core and surface temperature of the
battery has been considered in developing the scheme. A non-
linear observer with measured surface temperature and re-
constructed core temperature output error injection has been
designed using Lyapunov analysis. The output errors of the ob-
server are treated as residual signals for detecting and isolating the
faults in the system. To enhance the robustness of the scheme to
modelling uncertainties, an adaptive threshold generator has been
designed based on the known bounds of the uncertainties. The
residuals are compared with these adaptive thresholds to decide



Fig. 15. Residual responses under convective fault injected at 500 s.
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fault occurrence. Simulation and experimental studies conducted
in a commercial Lithium-ion battery cell are included to illustrate
the effectiveness of the scheme.

For future extension of this research, the following can be
considered: 1) development of a battery thermal diagnostic
scheme based on more comprehensive thermal models, e.g. dis-
tributed parameter battery thermal models and, 2) thermal fault-
tolerant control of batteries where the thermal management al-
gorithm minimises the effect of thermal faults on the batteries in
order to reduce battery degradation.
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