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Sensor Fault Detection, Isolation, and Estimation in Lithium-Ion Batteries
Satadru Dey, Sara Mohon, Pierluigi Pisu, and Beshah Ayalew

Abstract— In battery management systems (BMSs), real-time
diagnosis of sensor faults is critical for ensuring the safety and
reliability of the battery. For example, a current sensor fault leads
to erroneous estimates of state of charge and other parameters,
which in turn affects the control actions in the BMS. A temper-
ature sensor fault may lead to ineffective thermal management.
In this brief, a model-based diagnostic scheme is presented that
uses sliding mode observers designed based on the electrical and
thermal dynamics of the battery. It is analytically shown how the
extraction of the equivalent output error injection signals on the
sliding manifolds enables the detection, the isolation, as well as
the estimation of the temperature, voltage, and current sensor
faults. This brief includes simulation and experimental studies
to demonstrate and evaluate the effectiveness of the proposed
scheme. Discussions are also included on the effects of uncertainty
and on threshold design.

Index Terms— Fault detection and isolation, fault estimation,
Li-ion batteries, sensor fault, sliding mode observers.

I. INTRODUCTION

ESTIMATION and control algorithms in battery manage-
ment systems (BMSs) heavily depend on the real-time

measurements of battery voltage, current, and temperature.
Any fault in these sensors could hinder the BMS operation and
lead to catastrophic scenarios. However, in the existing Li-ion
battery literature, while several model-based state estimation
algorithms are presented [1]–[4], the real-time fault diagnosis
problem is much less explored.

The reviews of failure mechanisms and the diagnostics
related challenges can be found in [5] and [6]. In [7], a non-
linear fault detection and isolation scheme has been developed
to detect sensor and actuator faults. A Kalman-filter-based
scheme was proposed in [8] to detect overcharge and overdis-
charge faults. A universal adaptive stabilization technique was
proposed in [9] for diagnosing terminal voltage collapses.
In [10], a set of Luenberger and learning observers were used
for simultaneous fault isolation and estimation of a faulty cell
in a battery string. In [11], diagnostic algorithms are presented
for a battery pack. A fault detection and isolation strategy has
been presented in [12] based on structural analysis.
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Most of these existing approaches detect and/or isolate
some faults in the battery. However, very few of them actu-
ally estimate (some characteristics of) specific sensor faults.
In this brief, we fill this gap and extend the aforementioned
research by proposing a real-time diagnostic approach that
detects, isolates, and estimates specific sensor faults, namely,
the voltage, temperature, and current sensor faults. Note that
completing the detection and isolation steps alone may indi-
cate the fault occurrence and identify the faulty sensor, but
sensor fault estimation can provide crucial added benefits for
enhancing the reliability of BMSs. For example, current sensor
fault information can help augment or correct the popular
coulomb-counting-based state-of-charge (SOC) computation.
Furthermore, current and temperature sensor fault information
can help correct state-of-health parameter estimation schemes,
which generally depend on SOC and temperature. Especially,
in electric vehicle applications, it will enable the limp-home
mode by allowing the vehicle to be driven safely to home or to
a repair shop even after the occurrence of the fault. Broadly,
sensor fault estimation can provide fault-tolerance capability
to the BMS by allowing it to continue to function (although
possibly in a degraded but safe mode) even after the sensor
fault occurs.

In this brief, a diagnostic approach is presented that esti-
mates the sensor faults along with their detection and isolation.
As our focus is on output (sensor) faults, a model of the battery
cell comprising of an equivalent electrical circuit coupled to
a lumped thermal dynamics model is adopted for predicting
the cell output behavior for its simple structure and low
computational burden. The work adopts and builds on a sliding
mode observer-based fault detection methodology presented
in [13]. The basic idea to be exploited is that the equivalent
output error injection, which is a continuous approximation
(or filtered version) of the switching error injection term in the
sliding mode observer, captures the fault information on the
sliding surface. In this brief, three sliding mode observers are
designed using the electrical plus thermal model. Then, on the
sliding surfaces of each observer, a set of fault detection filter
expressions are derived that are driven by the equivalent output
error injections from the observers. The outputs of these filters
are used as residual signals to detect, isolate, and estimate the
sensor faults under the assumption that the faults and their time
derivatives are bounded and finite. Analytical justifications of
the proposed scheme are given using Lyapunov analysis for
each fault scenario.

The rest of this brief is organized as follows. Section II
briefly describes the battery cell model adopted for this
work, and Section III briefs the diagnostics problem and
outlines the detail design of the fault diagnosis scheme.
Section IV presents discussions of some simulation and
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Fig. 1. Electrical equivalent circuit model.

experimental results. Section V summarizes the conclusion of
this brief.

II. LITHIUM-ION CELL MODEL

For a model of a battery cell, the commonly used equivalent
electrical circuit (Fig. 1) plus the lumped thermal dynamics
model are adopted.

The electrical dynamics of the battery cell can be writ-
ten using Kirchoff’s law, and with a usual definition
of SOC

V̇c = − Vc

R0C0
+ I

C0
(1)

˙SOC = − I

Q
(2)

V = E0 − I R − Vc (3)

where V is the terminal voltage, I is the input current, R and
R0 and C0 are the resistors and capacitors of the electrical
circuit, respectively, Vc is the voltage across the capacitor C0,
E0 is the open-circuit voltage, and Q is the charge capacity
of the battery cell. The lumped thermal dynamics of the cell
are given by

mcṪ = I 2(R + R0) − h A(T − Tamb) (4)

where T is the battery cell temperature, m is the mass, c is the
specific heat capacity of the battery cell, h A is the effective
heat transfer coefficient, and Tamb is the ambient temperature.
Note that the open-circuit voltage is a function of SOC

E0 = f (SOC). (5)

In the presence of sensor faults, the sensor outputs can be
modeled by

Imeas = I + �I , Vmeas = V + �V , Tmeas = T + �T (6)

where Imeas, Vmeas, and Tmeas are the measured variables and
�I , �V , and �T are the current, voltage, and temperature
sensor faults, respectively. It is assumed that �k and �̇k are
bounded by the finite values |�k |max and |�̇k|max, respectively,
where k ∈ {I, V , T }. It is also assumed that no multiple faults
can occur at the same time. Furthermore, we consider the case
of small SOC ranges (valid for applications such as hybrid
electric vehicles), where the parameters R, R0, C0, mc, and h A
are constant and known with sufficient accuracy.

III. DIAGNOSTIC PROBLEM AND PROPOSED SCHEME

In this brief, we mainly focus on the faults in the
sensors: current sensor, voltage sensor, and temperature sensor.
The impact of these faults in BMS operation is discussed
in [12].

Fig. 2. Fault diagnosis scheme.

A. Diagnostic Scheme

The diagnostic scheme is shown in Fig. 2. In the following
paragraphs, the elements of the scheme are described in detail.

1) Observers: In our scheme, we use three observers, one of
which is based on (equivalent circuit) capacitor voltage
Vc dynamics given in (1) [Vc-Observer in (7) and (8)]
and the other two are based on temperature dynamics
given in (4) [T -Observer 1 in (9) and T -Observer 2
in (10)]. From these observers, we extract the equivalent
output error injection signals required to maintain the
sliding motion [14].

a) Vc-Observer:

˙̂V c = − ̂Vc

R0C0
+ Imeas

C0
+ Lvsgn(Vc−meas − ̂Vc)

(7)

Vc−r = E0 − Imeas R − Vmeas (8)

where Vc−r is the reconstructed value of Vc,
Lv > 0 is the tunable observer gain, and E0

is calculated via E0 = f (̂SOC), where ˙̂SOC =
−Imeas/Q assuming Q is known with sufficient
accuracy. Note that the initial SOC can be esti-
mated from the E0 − SOC map f (·) when the cell
is at rest for a sufficient amount of time. However,
some amount of SOC error and hence the E0
error can be treated as uncertainties and suppressed
by the nonzero thresholding scheme discussed
in Section III-C.

b) T-Observer 1:

mc ˙̂T 1 = I 2
meas(R + R0) − h A(̂T1 − Tamb)

+ LT 1sgn(Tmeas − ̂T1) (9)

where LT 1 > 0 is the tunable observer gain.
c) T-Observer 2:

mc ˙̂T 2 = −h A(̂T2 − Tamb)+LT 2sgn(Tmeas − ̂T2)

(10)

where LT 2 > 0 is the tunable observer gain.

2) Filters: Based on the error dynamics of Vc-Observer,
T -Observer 1, and T -Observer 2 on the sliding surface,
three filter expressions are derived. The outputs of these
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filters are the residuals for fault detection, isolation, and
estimation

Filter 1: ṙ1 + r1

R0C0
= −ϑV (11)

where r1 is the residual 1 and ϑV is the equivalent
output error injection from Vc-Observer and essen-
tially a continuous approximation (filtered version) of
the switching signal Lvsgn(Vc−r − ̂Vc). The signal
ϑV can be generated using the following equation:
ϑ̄V (s) = GV (s)UV (s), where ϑ̄V (s) and UV (s) are
the Laplace transforms of time-domain signals ϑV and
Lvsgn(Vc−r − ̂Vc), respectively, and GV (s) is a user-
defined low-pass filter

Filter 2: r2 = |Imeas| − √

ϑT 2/(R + R0) (12)

Filter 3: mcṙ3 + h Ar3 = ϑT 1 (13)

where r2 and r3 are the residuals 2 and 3, and ϑT 1
and ϑT 2 are the equivalent output error injections from
T -Observer 1 and T -Observer 2, respectively. The
signals ϑT 1 and ϑT 2 are continuous approximations
(filtered versions) of the switching signals
LT 1sgn(Tmeas − ̂T1) and LT 2sgn(Tmeas − ̂T2),
respectively. The signals ϑT i can be generated using
the following equation: ϑ̄T i (s) = GT i (s)UT i (s), where
ϑ̄T i (s) are the Laplace transforms of time-domain
signals ϑT i , UT i (s) are the Laplace transforms of time-
domain signals LT i sgn(Tmeas − ̂Ti ), and GT i (s) are
the user-defined low-pass filters (with i = 1, 2). Note
that the low-pass filters GV (s) and GT i (s) essentially
extract the slow component of the actual switching
signals and should have unity steady-state gains [13].
Next, we present the main result.

Proposition 1: Consider the system dynamics described
by (1)–(5), the faulty sensor model described by (6), the
observer structures (7)–(10), and the filter structures (11)–(13).
If the observer gains satisfy the following conditions:

Lv > max{| f1|max, | f2|max} > 0 (14)

LT 1 > max{| f3|max, | f4|max} > 0 (15)

LT 2 > | f5|max ≥ |I |2max(R + R0) > 0 (16)

where | f1|max = (|Ṽc−max|/R0C0) + |�̇V |max, | f2|max =
(|Ṽc−max|/R0C0) + (|�I |max/C0) + |�̇V 2|max with �V 2 =
�E0 − �I R, where �E0 is the result of SOC error due to
the use of faulty current measurement, | f3|max = |�I |2max +
2|�I |max|I |max(R + R0), | f4|max = mc|�̇T |max + h A|�T |max,
and | f5|max = mc|�̇T |max + h A|�T |max + |I |2max(R + R0);
then defining r1, r2, and r3 as the residuals, the sensor faults
can be detected and isolated by the fault signatures given
in Table I.

Remark 1: As mentioned in Table I, the estimates of the
voltage, current, and temperature sensor faults can be given
by r1, r2, and r3, respectively.

Proof: We analyze three sensor fault cases separately.
1) Case 1 (Occurrence of Voltage Sensor Fault

Only): As the fault is only in the voltage sensor,

TABLE I

FAULT SIGNATURE TABLE. 1 AND 0 DENOTE NONZERO
AND ZERO, RESPECTIVELY

�V �= 0, whereas �I = �T = 0. Subtracting (7) from (1),
the error dynamics of the Vc − Observer can be written as

˙̃Vc = − Ṽc

R0C0
− Lvsgn(Vc−r − ̂Vc) (17)

with Ṽc = Vc − ̂Vc being the estimation error between the
actual Vc = (E0 − I R − V ) and the estimated ̂Vc. Note that
the sliding surface in this case is sV = Vc−r − ̂Vc = Ṽc −�V ,
which is inside the sign term. The reachability condition for
this sliding surface can be analyzed by choosing a Lyapunov
function candidate W1 = 0.5s2

V . Then

Ẇ1 = sV ṡV = sV ( ˙̃Vc − �̇V ) (18)

⇒ Ẇ1 = sV f1−LvsV sgn(sV ) with f1 = − Ṽc

R0C0
− �̇V .

(19)

Now applying the relationship āb̄ ≤ |ā||b̄| on the first term of
the right-hand side of (19), we have

Ẇ1 ≤ |sV |(| f1| − Lv). (20)

Now, for a sufficiently high positive gain Lv, Ẇ1 ≤ 0 and can
be written as

Ẇ1 ≤ −α1
√

W 1 with α1 = −√
2(| f1|max − Lv)>0

⇒ W1(t) ≤
{

− α1

2
t + √

W1(t0)

}2

. (21)

Note that the observer gain should be selected such that it satis-
fies the condition Lv > | f1|max = (|Ṽc−max|/R0C0)+|�̇V |max,

where | f1|max will be bounded under the assumption that |�̇V |
is bounded by a finite value |�̇V |max. Further, |Ṽc−max| will
be bounded if Lv is selected such that it suppresses the effect
of |Ṽc(t0)|, which is always bounded and thereafter |Ṽc| will
be nonincreasing ∀t > t0. Therefore, it can be concluded that
the sliding surface sV = 0 will be achieved in some finite time
t1 ≤ 2

√
W1(t0)/α1. On this sliding surface, we have sV = 0

and ṡV = 0, which leads to

Ṽc − �V = 0 (22)

˙̃Vc − �̇V = 0. (23)

Now, using (17) and (22), (23) can be written as

�̇V + �V

R0C0
= −ϑV (24)

where ϑV is the equivalent output error injection
signal defined after (11). As there is presence of fault �V ,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

the left-hand side of (24) will be nonzero, thereby making
ϑV �= 0. Now comparing (11) and (24) and considering a
zero initial condition for �V and r1, it can be concluded
that r1 = �V , which proves that r1 is an estimate of the
voltage sensor fault. A similar analysis can be performed for
T − Observer 1 and T − Observer 2 using the Lyapunov
function candidates W2 = 0.5mcs2

T 1 and W3 = 0.5mcs2
T 2,

respectively, where sT i = Tmeas − ̂Ti with i = 1, 2. In this
case, the observers act under nominal conditions since faulty
voltage measurement does not affect the thermal dynamics,
and therefore, we have r2 = r3 = 0. The observer gains should
satisfy the conditions LT 1 > 0 and LT 2 > |I |2max (R + R0)
for error convergence.

2) Case 2 (Occurrence of Current Sensor Fault Only):
In this case, we have only current sensor fault, and therefore,
�I �= 0, whereas �V = �T = 0. Subtracting (7) from (1),
the error dynamics of the Vc − Observer can be written as

˙̃Vc = − Ṽc

R0C0
− �I

C0
− Lvsgn(Vc−r − ̂Vc) (25)

with Ṽc = Vc − ̂Vc being the estimation error between the
actual Vc = (E0 − I R − V ) and the estimated ̂Vc. The sliding
surface in this case is sV = Vc−r − ̂Vc = E0 + �E0 −
(I+�I )R−V −̂Vc = Ṽc+�E0−�I R, which is inside the sign
term. Note that the term �E0 is the result of SOC computation
error due to the use of faulty current measurement. Now,
defining �E0 − �I R = �V 2, the reachability condition for
this sliding surface can be analyzed by choosing the Lyapunov
function candidate W1 = 0.5s2

V . Then

Ẇ1 = sV ṡV = sV ( ˙̃Vc + �̇V 2) (26)

⇒ Ẇ1 = sV f2−Lv|sV | with f2 = − Ṽc

R0C0
− �I

C0
+�̇V 2.

(27)

Now applying āb̄ ≤ |ā||b̄| on the first term of the right-hand
side of (27), we have

Ẇ1 ≤ |sV |(| f2| − Lv). (28)

If the gain Lv is sufficiently high and positive, Ẇ1 ≤ 0 and
can be written as

Ẇ1 ≤ −α2
√

W 1 with α2 = −√
2(| f2|max − Lv) > 0

W1(t) ≤
{

− α2

2
t + √

W1(t0)

}2

. (29)

Note that the observer gain should satisfy the condition
Lv > | f2|max = (|Ṽc−max|/R0C0)+(|�I |max/C0)+|�̇V 2|max,
where | f2|max will be bounded under the assumption that
|�̇V 2| and |�I | are bounded by the finite values |�̇V 2|max and
|�I |max, respectively. Therefore, it can be concluded from the
above analysis that the sliding surface sV = 0 will be achieved
in some finite time t2 ≤ 2

√
W1(t0)/α2. On this sliding surface,

we have sV = 0 and ṡV = 0, which leads to

Ṽc + �V 2 = 0 (30)
˙̃Vc + �̇V 2 = 0. (31)

Now, using (25) and (30), (31) can be written as

�̇V 2 + �V 2

R0C0
− �I

C0
= ϑV (32)

where ϑV is the equivalent output error injection signal
defined after (11). Due to the presence of the fault �I , the
left-hand side of (32) will be nonzero, thereby making ϑV �= 0.
As ϑV �= 0, it can be concluded that r1 �= 0 from (11).

Subtracting (9) from (4), the error dynamics of the
T − Observer 1 can be written as

mc ˙̃T1 = {I 2 − (I + �I )
2}(R + R0) − h AT̃1

− LT 1sgn(Tmeas − ̂T1) (33)

with T̃1 = T − ̂T1 being the estimation error between the
actual T and the estimated ̂T1. Note that the sliding surface
in this case is sT 1 = Tmeas − ̂T1 = T̃1, which is inside the
sign term. The reachability condition for this sliding surface
can be analyzed by choosing the Lyapunov function candidate
W2 = 0.5mcs2

T 1. Then

Ẇ2 =sT 1
({− �2

I −2�I I
}

(R+ R0)−h AsT 1−LT 1sgn(sT 1)
)

.

(34)

Now applying āb̄ ≤ |ā||b̄| on the first term of the right-hand
side of (34), we have

Ẇ2 ≤ ∣

∣ − �2
I − 2�I I

∣

∣(R + R0)|sT 1| − LT 1|sT 1|.
Now applying triangle inequality on the first term of the
right-hand side of the above equation and then applying
āb̄ ≤ |ā||b̄|, we have

Ẇ2 ≤ | f3||sT 1| − LT 1|sT 1|
with | f3| = |�I |2 + 2|�I ||I |(R + R0).

For a sufficiently high choice of gain LT 1 > 0, Ẇ2 ≤ 0 and
can be written as

Ẇ2 ≤ −α3
√

W 2, α3 = −√

2/mc(| f3|max − LT 1)>0

⇒ W2(t) ≤
{

−α3

2
t + √

W2(t0)
}2

. (35)

Note that the observer gain should satisfy the condition LT 1 >
| f3|max = |�I |2max + 2|�I |max|I |max(R + R0), where | f3|max
will be bounded under the assumption that Imax is bounded
and |�I | is bounded by a finite value |�I |max. It can be
concluded from (35) that the sliding surface sT 1 = 0 will
be achieved in some finite time t3 ≤ 2

√
W2(t0)/α3. On this

sliding surface, we have sT 1 = T̃1 = 0 and ṡT 1 = ˙̃T1 = 0.
Under this condition, from (30), we can write ϑT 1 = {I 2 −
(I +�I )

2}(R + R0), where ϑT 1 is the equivalent output error
injection signal defined after (13). Therefore, from (13), we
can conclude that r3 �= 0.

For the error dynamics of the T − Observer 2, a similar
analysis can be performed using the Lyapunov function can-
didate W3 = 0.5mcs2

T 2, where sT 2 = Tmeas −̂T2. The observer
gain should satisfy the condition LT 2 > |I |2max(R+ R0) for the
error convergence. Further, we can write ϑT 2 = I 2(R + R0),
where ϑT 2 is the equivalent output error injection signal
defined after (13). However, in this case, we have �I �= 0,
and therefore, we can conclude from (12) that r2 �= 0.
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Moreover, r2 also estimates the amplitude of the fault. Note
that the sign of the fault can be estimated by evaluating the
sign of �V 2 using the filter (32).

3) Case 3 (Occurrence of Temperature Sensor Fault Only):
Here, we consider a temperature sensor fault leading to the
condition �T �= 0, whereas �I = �V = 0. In this case,
the Vc − Observer acts under nominal conditions since faulty
temperature measurement does not affect the voltage error
dynamics, and therefore, we have r1 = 0. The observer
gain should satisfy the condition Lv > 0 for nominal error
convergence. Subtracting (9) from (4), the error dynamics of
the T − Observer 1 can be written as

mc ˙̃T1 = −h AT̃1 − LT 1sgn(Tmeas − ̂T1) (36)

with T̃1 = T − ̂T1 being the estimation error between the
actual T and the estimated ̂T1. Note that the sliding surface in
this case is sT 1 = Tmeas − ̂T1 = T̃1 + �T , which is inside the
sign term. The reachability condition for this sliding surface
can be analyzed by choosing a Lyapunov function candidate
W2 = 0.5mcs2

T 1. Then

Ẇ2 = sT 1(mc�̇T − h AsT 1 + h A�T − LT 1sgn(sT 1)) (37)

⇒ Ẇ2 ≤ (| f4| − LT 1)|sT 1| with f4 = mc�̇T + h A�T .

(38)

Now, for a sufficiently high positive gain LT 1, Ẇ2 ≤ 0 and
can be written as

Ẇ2 ≤ −α4
√

W 2, with α4 = −√

2/mc(| f4|max − LT 1) > 0

⇒ W2(t) ≤
{

−α4

2
t + √

W2(t0)
}2

. (39)

Note that the observer gain should satisfy the condition
LT 1 > | f4|max = mc|�̇T |max + h A|�T x |max, where | f4|max

will be bounded under the assumption that �T and �̇T are
bounded by the finite values |�T |max and |�̇T |max. There-
fore, from the above analysis, it can be concluded that the
sliding surface sT 1 = 0 will be achieved in some finite
time t4 ≤ 2

√
W2(t0)/α4. In this sliding surface, we have

sT 1 = T̃1 + �T = 0 and ṡT 1 = ˙̃T1 + �̇T = 0. Under this
condition, from (36), we can write that

mc�̇T + h A�T = ϑT 1 (40)

where ϑT 1 is the equivalent output error injection signal
defined after (13). As there is presence of fault �T , the
left-hand side of (40) will be nonzero, thereby making
ϑT 1 �= 0.

Now comparing (13) and (40), it can be concluded that
r3 = �T , which proves that r3 is an estimate of the tempera-
ture sensor fault.

Subtracting (10) from (4), the error dynamics of the
T − Observer 2 can be written as

mc ˙̃T2 = I 2(R + R0) − h AT̃2 − LT 2sgn(Tmeas − ̂T2) (41)

with T̃2 = T −̂T2 being the estimation error between the actual
T and the estimated ̂T2. Note that the sliding surface in this
case is sT 2 = Tmeas − ̂T2 = T̃2 + �T , which is inside the

sign term. The reachability condition for this sliding surface
can be analyzed by choosing a Lyapunov function candidate
W3 = 0.5mcs2

T 2. Then

Ẇ3 = sT 2{I 2(R + R0) + mc�̇T + h A�T − h AsT 2

− LT 2sgn(sT 2)} (42)

⇒ Ẇ3 ≤ (| f5| − LT 2)|sT 2|
with f5 = I 2(R + R0) + mc�̇T + h A�T . (43)

Now, for a sufficiently high positive gain LT 2, Ẇ3 ≤ 0 and
can be written as

Ẇ3 ≤ −α5
√

W 3, α5 = −√

2/mc(| f5|max − LT 2)

⇒ W3(t) ≤
{

− α5

2
t + √

W3(t0)

}2

. (44)

Note that the observer gain should satisfy the condition
LT 2 > | f5|max = mc|�̇T |max + h A|�T |max + |I |2max(R + R0),
where | f5|max will be bounded under the assumption that �T ,
�̇T and I are bounded, respectively, by the finite values
|�T |max, |�̇T |max, and |I |max. Therefore, from the above
analysis, it can be concluded that the sliding surface sT 2 = 0
will be achieved in some finite time t5 ≤ 2

√
W3(t0)/α5.

In this sliding surface, we have sT 2 = T̃2 + �T = 0 and
ṡT 2 = ˙̃T2 + �̇T = 0. Under this condition, from (41), we can
write ϑT 2 = mc�̇T + h A�T + I 2(R + R0), where ϑT 2 is
the equivalent output error injection signal defined after (13).
Therefore, from (12), we can conclude that r2 �= 0. �

B. Effect of Modeling, Parametric,
and Measurement Uncertainties

Although the battery system parameters are assumed to be
constant at the design phase, in reality, they may vary due to
temperature and current dependencies. Furthermore, there will
be measurement and modeling uncertainties. In this section,
we will analyze uncertainties affecting the proposed diagnostic
scheme. With the inclusion of the additive uncertainties, the
Vc dynamics (1) and the output (8) can be rewritten as

V̇c = − Vc

R0C0
+ I

C0
+ η1 (45)

Vc−r = E0 − Imeas R − Vmeas + η2 (46)

where η1 and η2 are the lumped effects of the uncertainties,
which can be nonlinear functions of states and inputs, respec-
tively. We assume that uncertainties and their derivatives are
bounded, i.e., η2, η1, η̇1, η̇2 ∈ L∞. Now, in the presence of
no sensor faults, the error dynamics of the Vc − Observer can
be rewritten as

˙̃Vc = − Ṽc

R0C0
− Lvsgn(Ṽc + η2) + η1. (47)

Note that the sliding surface here is sV = Ṽc+η2. Now, even in
the absence of any faults, the equivalent output error injection
signal ϑV �= 0 due to the presence of uncertainties. However,
ϑV will be bounded with the assumption of η2, η1, η̇2 ∈ L∞.
The signal ϑV and therefore the residual r1 will be nonzero
even if there is no fault. Under these uncertainties, an
upper bound on the residual r1 can be computed as follows.
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We assume that the observer gain Lv > 0 is sufficiently high to
have reachability to the sliding surface. At the sliding surface,
we have sV = 0 and ṡV = 0, which leads to: Ṽc + η2 = 0
and ˙̃Vc + η̇2 = 0. Therefore, (47) can be written as

ϑV = η̇2 + η2

R0C0
+ η1. (48)

Substituting the above expression for ϑV in (11)

ṙ1 + r1

R0C0
= −η̇2 − η2

R0C0
− η1 (49)

⇒ d(r1 + η2)

dt
+ (r1 + η2)

R0C0
= −η1. (50)

From the solution of differential equation (50) and denoting
α = 1/R0C0, the time evolution of the signal (r1 + η2) can
be written as

r1(t) = −η2(t) + {r1(0) + η2(0)}e−αt −
∫ t

0
e−α(t−τ )η1(τ )dτ.

Using triangle inequality, the relationship āb̄ ≤ |ā||b̄|, the
uncertainty bounds |ηi | ≤ |ηi |max and |η̇i | ≤ |η̇i |max with
i ∈ {1, 2}, and the fact that e−αt > 0, ∀t ≥ 0, implies
|e−αt | = e−αt , ∀t ≥ 0, the upper bound of r1 can be derived as

|r1(t)| ≤ |η2|max + {|r1(0)| + |η2|max}e−αt

+
∫ t

0
e−α(t−τ )|η1|maxdτ. (51)

Therefore, it can be concluded that the estimate of the voltage
sensor fault using (11) will be corrupted by the effect of
uncertainties.

C. Threshold Design for Residuals: Passive
Robustness to Uncertainties

To suppress the effect of uncertainties, we design some
nonzero constant threshold values against which the residuals
will be compared. The residual evaluation logic will be as
follows: residual ≥ threshold indicates fault and residual <
threshold indicates no fault. To design the threshold, we
collect residual data under nonfaulty conditions either by
Monte Carlo simulation or experimental studies. Then, we
plot the probability distribution of the residuals. One example
probability distribution is shown in Fig. 3. Note that this
particular example probability distribution is generated based
on the assumption of zero-mean Gaussian distribution of
the uncertainties. In reality, this probability distribution will
depend on uncertainties in the experimental data or of the
Monte Carlo study. Then, we select a maximum allowable
probability of false alarms.

From Fig. 3, it can be seen that the probability of the false
alarms can be computed by the following equation:

PFA =
∫ −th

−∞
p0(x)dx +

∫ +∞

th
p0(x)dx (52)

where th is the selected threshold and p0 is the residual’s
probability distribution under no fault. The goal here is to
select th, which will give the acceptable PFA from (52).

Fig. 3. Residual probability distribution under no fault.

Fig. 4. Dynamic discharge current profile and corresponding voltage and
temperature responses (model outputs) under no fault condition.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we test the effectiveness of the proposed
diagnostic scheme by conducting simulation and experimental
studies on a commercial A123 Li-ion battery cell. The studies
are conducted on a constant parameter scenario, as discussed
in Section III-A. First, using the experimental data, battery
model parameters are extracted by fitting the battery model
to the experimental data. This is done by solving an opti-
mization problem, where a set of parameters that minimize
the difference between experimental and model simulated data
were identified. The identified model parameters are R = 0.2,
R0 = 0.019, C0 = 600, mc = 180, h A = 0.4, and
E0 = 2.939 + 0.01939 ∗ SOC − 0.000377 ∗ SOC2 + 2.452 ×
10−6 ∗ SOC3.

A. Simulation Studies

Now, using the battery model identified in the previous step,
we first perform simulation studies. To emulate a realistic
scenario, measurement noise has been injected to the sensor
outputs (standard deviation: 80-mA current noise, 50-mV
voltage noise, and 0.5 °C temperature noise). To generate
thresholds, the probability distribution of the nonfaulty resid-
uals has been generated by a Monte Carlo study with 5%
acceptable false alarm probability. For a cell-level diagnostic



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DEY et al.: SENSOR FAULT DETECTION, ISOLATION, AND ESTIMATION IN LITHIUM-ION BATTERIES 7

Fig. 5. Residual responses for a voltage sensor bias fault of 0.1 V (injected
at 100 s). The solid blue line represents the residuals and the red line represents
the thresholds. Leftmost: the solid black line represents the injected fault and
the blue line with x markers represents the r1 residual.

Fig. 6. Residual responses for a current sensor bias fault of 1 A (injected
at 100 s). The solid blue line represents the residuals and the red line represents
the thresholds. Middle: the solid black line represents the injected fault and
the blue line represents the r2 residual.

study, a modified Urban Dynamometer Driving Schedule-like
dynamic discharge current profile has been used as shown in
Fig. 4 along with the corresponding voltage and temperature
response.

Bias-type faults were injected to evaluate the performance
of the scheme. The results are given in Figs. 5–7 for a voltage
sensor bias fault of 0.1 V, a current sensor bias fault of 1 A, and
a temperature sensor bias fault of 1 °C, respectively. Note that
the diagnostic scheme is able to detect, isolate, and estimate
the faults as per the fault signatures in Table I.

Next, we evaluate the performance of the diagnostic scheme
in the presence of the parametric uncertainties. To this end,
we examine the fault estimation errors and false alarm rates
in such conditions. In the plant model, several important
parameters (R, R0, C0, h A, and Q) are deviated from their
nominal values to induce the uncertainties. The parameter
deviations and corresponding estimation errors and false alarm
rates are shown in Table II. It can be noted that the scheme
significantly degrades under the deviation in the parameter R,

Fig. 7. Residual responses for a temperature sensor bias fault of 1 °C (injected
at 100 s). The solid blue line represents the residuals and the red line represents
the thresholds. Rightmost: the solid black line represents the injected fault and
the blue line with x markers represents the r3 residual.

TABLE II

EFFECT OF PARAMETRIC UNCERTAINTIES

as evident in the large estimation errors and high false alarm
rates. This is reasonable because the parameter R represents
a large part of the battery internal resistance and hence is the
most sensitive part of the electrical and thermal dynamics.
Other than R, the performance of the scheme is acceptable
under the given deviations in the rest of the parameters.

B. Experimental Studies

In this brief, we show the effectiveness of the proposed
scheme using experimental data collected from the physical
battery. The experimental data along with the model data
are shown in Fig. 8. To generate thresholds, the probability
distribution of the nonfaulty residuals has been generated
under different operating conditions by varying the input
current up to 5C and different initial temperature conditions
in 15 °C–40 °C range with 5% acceptable false alarm proba-
bility. Current profiles used in the study are constant discharge
currents of 1C, 3C, and 5C and pulse discharge currents with
pulse amplitudes of 1C and 4C. In the experimental data, we
injected constant bias faults in the battery sensor outputs. The
results given in Figs. 9–11 for a voltage sensor bias fault
of 0.5 V, a current sensor fault of 2 A, and a temperature sensor
bias fault of 2 °C, respectively, show a reasonable performance
for the scheme. Note that in Fig. 11, the residual r2 goes below
the threshold toward the end. This is because the presence of
uncertainty attenuates the fault effect in the residual. However,
this should not affect the diagnosis as the residual was high
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Fig. 8. Current profile and corresponding voltage and temperature responses
measured from the battery under no fault condition. The experimental voltage
and temperature are compared with model outputs.

Fig. 9. Residual responses for a voltage sensor bias fault of 0.5 V (injected
at 1150 s). The solid blue line represents the residuals and the red line
represents the thresholds. Leftmost: the solid black line represents the injected
fault and the blue line with x markers represents the r1 residual.

for a long period of time. To mitigate such effects, one might
include the residual up time in the scheme to infer the presence
of faults.

It can be seen that while the detection and isolation are
successful, the estimates of the bias faults include errors
due to uncertainties. In this study, we have found that the
current, voltage, and temperature sensor fault estimation errors
are within 3%, 10%, and 5%, respectively. Note that the
filters (11)–(13) that are generating the residuals are stable.
Therefore, as long as the uncertainties and their derivatives
remain bounded, the fault estimates will be bounded around
the neighborhood of the actual fault.

In the case of structured uncertainties that are far different
from the fault in their frequency domain characteristics, it is
possible to decouple the fault information from the uncer-
tainties via appropriate filtering mechanisms. However, it is
observed that in the case of batteries, the uncertainties are
unstructured and can be close to or overlap with the frequency
domain characteristics of the faults, which makes it very
difficult to suppress their effects completely.

Fig. 10. Residual responses for current sensor bias fault of 2 A (injected
at 1150 s). The solid blue line represents the residuals and the red line
represents the thresholds. Middle: the solid black line represents the injected
fault and the blue line represents the r2 residual.

Fig. 11. Residual responses for temperature sensor bias fault of 2 °C
(injected at 1150 s). The solid blue line represents the residuals and the red
line represents the thresholds. Rightmost: the solid black line represents the
injected fault and the blue line with x markers represents the r3 residual.

V. CONCLUSION

This brief outlined a diagnostic scheme for detecting, iso-
lating, and estimating sensor faults in Li-ion batteries. The
scheme uses three sliding mode observers based on the elec-
trical and thermal dynamics of the battery. Further, some filter
expressions have been derived using dynamics at the sliding
motion, which are driven by the equivalent output injection
errors from the sliding mode observers. The effect of modeling
and parametric uncertainties on the diagnostic scheme has
been analyzed. Finally, simulation and experimental studies
have been conducted in a commercial A123 Li-ion battery
cell to demonstrate the potential of the approach.
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