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Nonlinear Adaptive Observer
for a Lithium-Ion Battery
Cell Based on Coupled
Electrochemical–Thermal Model
Real-time estimation of battery internal states and physical parameters is of the utmost
importance for intelligent battery management systems (BMS). Electrochemical models,
derived from the principles of electrochemistry, are arguably more accurate in capturing
the physical mechanism of the battery cells than their counterpart data-driven or equiva-
lent circuit models (ECM). Moreover, the electrochemical phenomena inside the battery
cells are coupled with the thermal dynamics of the cells. Therefore, consideration of
the coupling between electrochemical and thermal dynamics inside the battery cell
can be potentially advantageous for improving the accuracy of the estimation. In this
paper, a nonlinear adaptive observer scheme is developed based on a coupled
electrochemical–thermal model of a Li-ion battery cell. The proposed adaptive observer
scheme estimates the distributed Li-ion concentration and temperature states inside the
electrode, and some of the electrochemical model parameters, simultaneously. These
states and parameters determine the state of charge (SOC) and state of health (SOH) of
the battery cell. The adaptive scheme is split into two separate but coupled observers,
which simplifies the design and gain tuning procedures. The design relies on a Lyapu-
nov’s stability analysis of the observers, which guarantees the convergence of the com-
bined state-parameter estimates. To validate the effectiveness of the scheme, both
simulation and experimental studies are performed. The results show that the adaptive
scheme is able to estimate the desired variables with reasonable accuracy. Finally, some
scenarios are described where the performance of the scheme degrades.
[DOI: 10.1115/1.4030972]

Introduction

Li-ion batteries are now the leading solutions for electrified
transportation and stationary energy storage applications due to
their several beneficial features in high energy and power density,
absence of memory effect and self-discharge, low environmental
impact, etc. However, they still suffer from safety and reliability
concerns. These concerns can be addressed via the advanced
BMS, which require precise knowledge of battery internal infor-
mation like SOC and SOH.

The core challenge for acquiring these internal information is
that, in general, the only available information in real-time is
boundary measurement of voltage, current, and temperature. This
fact underscores the importance of reliable estimation algorithms
that compute the internal information in the Li-ion cells from
these limited measurements. Moreover, there are several other
challenges in SOC and SOH estimation of Li-ion cells [1]. One of
them arises from the spatially distributed nature of Li-ion concen-
trations inside the cell. Other crucial challenges relate to paramet-
ric uncertainties with aging (both with charge/discharge history
and calendar time), cell-to-cell manufacturing variability, and var-
iations in Li-ion chemistry. In this paper, we address some of
these challenges by proposing an electrochemical–thermal model-
based adaptive estimation scheme for online joint estimation of
the distributed Li-ion concentration in the electrodes, and some
uncertain model parameters. In addition to improving the accu-
racy of the SOC estimation, online parameter estimates can be
used as SOH indicators.

In the literature, the different estimation algorithms proposed
for Li-ion batteries can be broadly classified based on the type of
model used: (1) data-driven model-based algorithms [2,3], (2)
ECM-based algorithms [4–7], and (3) electrochemical model-
based algorithms. Although data-driven approaches are simple in
implementation and design, the drawback lies in the requirement
of large amount of data over the whole operating regime of the
battery and lack of physical meaning of the data-driven model
parameters. Similarly, the parameters of the ECM based
approaches (for example, the resistors and capacitors) have to be
modeled as functions of different operating conditions such as
SOC, temperature, etc., to capture the battery behavior over larger
operating range.

Electrochemical model-based approaches, developed from
porous electrode and concentrated solution theories, are more
accurate compared to other kinds of models [8]. However, full-
order electrochemical model (pseudo-two-dimensional (P2D)
model) consists of coupled nonlinear partial differential equations
(PDE) [9]. A few methods exist in literature that improves the
computational efficiency of P2D model, for instance in Ref. [10],
a Legendre polynomial and Galerkin projection based approach is
used. However, the complex mathematical structure of P2D model
still remains one of the difficult factors for suitable estimator
design. This complex mathematical structure has led to different
kinds of model reductions in the literature before the estimator is
designed. For example, a residue grouping with a linear Kalman
filter was used in Ref. [11] and a constant electrolyte concentra-
tion assumption with Luenberger observer was used in Ref. [12].
In Ref. [13], a reduced-order electrochemical model is developed
using quasi-linearization and Pade approximation. Recently, a
physics-based second-order Li-ion battery model is presented in
Ref. [14]. Another reduced-order electrochemical model called
the single particle model (SPM) where the electrodes are
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approximated as spherical particles is also popular in SOC estima-
tor designs [15–17]. The authors of the present paper proposed
SPM-based nonlinear observer designs for the SOC estimation in
Refs. [18,19].

Unlike the well-investigated SOC estimation problem, adaptive
SOC estimation or the simultaneous state-parameter estimation
problem is relatively less explored for electrochemical models.
Some of the existing works use multirate particle filter [20],
unscented Kalman filter [21], iterated extended Kalman filter
[22,23] for adaptive SOC estimation. The drawback of these
approaches lies in the difficulty to theoretically verify the conver-
gence of the estimators. In another work [24], an adaptive PDE
observer and least square parameter estimator based framework is
presented for the same problem. However, stability of the com-
bined state and parameter estimators was not verified analytically.
In Refs. [25,26], a nonlinear geometric observer based approach is
presented for adaptive estimation of battery SOC and parameters
with theoretical verification of error convergence. However, the
Li-ion diffusion dynamics and the Li-ion spatial distribution in the
battery electrode are ignored. Moreover, thermal effects are not
considered. As will be seen later, the approach presented in pres-
ent paper takes the Li-ion diffusion and spatial distribution into
consideration along with considering the thermal effects. The
authors of the current paper also proposed a sliding mode observer
based approach in Ref. [27] for adaptive estimation of SOC. How-
ever, the drawback of the approach is that a high initial error in
contact resistance estimation may lead to instability of the
scheme. Other than adaptive estimation techniques, recently a
SOH monitoring technique is presented that essentially monitors
the side reaction current density of the battery via retrospective
cost-subsystem identification [28,29].

Other than SOC and SOH, battery temperature is another
important quantity that is used by BMS for thermal management
of the batteries. Some recent results exist in literature for tempera-
ture estimation. For example, a linear parameter varying observer-
based approach is presented in Ref. [30] for temperature estima-
tion of automotive battery packs. A lumped parameter thermal
model has been presented in Ref. [31] to capture surface and core
temperature of the battery and used for adaptive observer-based
temperature estimation along with health monitoring via internal
resistance estimation [32]. Further, the work [32] is extended to
temperature estimation under unknown cooling condition [33] and
to parameterization and observability analysis of a battery cluster
[34]. However, these approaches use ECM to capture the battery
electrical and SOC dynamics. In Ref. [35], an enhanced SPM is
used considering temperature and electrolyte effects to design a
Luenberger observer for SOC estimation. However, the model
parameters were assumed to be known and parameter estimation
problem is not addressed. In this paper, we extend these
researches by presenting an electrochemical model-based state-
parameter estimation approach considering the thermal dynamics
of the battery cell.

From the above review, it can be noted that most of the
electrochemical–model based adaptive estimation approaches
cited above consider only electrochemical dynamics under iso-
thermal conditions. However, there is a bidirectional coupling
between the electrochemical and thermal dynamics of a Li-ion
cell. In Refs. [12,36], numerical and experimental results have
shown that inclusion of the thermal model may lead to significant
improvement in the SOC estimation accuracy. This observation is
also consistent with the physical behavior of the cell which shows
a bidirectional coupling captured by the coupled model as fol-
lows: in electrochemical model, the open circuit potential and
some parameters are affected by temperature changes, whereas in
the thermal model, the electrochemical overpotential and open cir-
cuit potential contribute to heat generation [37].

To address the above issues, we proposed a Lyapunov-based
nonlinear adaptive observer design based on a combined
electrochemical–thermal model of a Li-ion cell in Ref. [38]. In
this paper, we extend this preliminary work by including the

following: (1) detailing the discussion on the modeling of the
Li-ion cell, (2) relaxing the constant contact resistance assumption
of our previous work [38] and re-establishing the convergence
proof of the adaptive observer considering temperature depend-
ence of the contact resistance, (3) adding experimental studies on
a commercial Li-ion cell, and (4) including discussions on the lim-
itations of the proposed observer scheme. We also provide an ana-
lytical proof of convergence for the overall adaptive scheme
combining state and parameter estimators. In this study, we utilize
the single particle electrochemical model (SPM) along with
lumped thermal dynamics [39] to derive the adaptive observers.
Three parameters, namely, diffusion coefficient, contact resist-
ance, and active material volume fraction, are estimated along
with the SOC, and may be used as SOH indicators [40].

The rest of the paper is organized as follows: The section,
Lithium-Ion Cell Electrochemical-Thermal Model, discusses the
electrochemical–thermal modeling of Li-ion cell. After that the
adaptive scheme is described. Next, simulation and experimental
results are provided. Then some potential failure scenarios are
illustrated for the adaptive scheme, and finally, the concluding
remarks are summarized.

Lithium-Ion Cell Electrochemical–Thermal Model

The benchmark Li-ion cell electrochemical model is the P2D
model derived from the porous electrode and concentrated solu-
tion theories [9]. It describes mass and charge conservation in the
solid active material and the electrolyte along with the electro-
chemical kinetics described by Butler–Volmer equation. Although
there exist some approaches, e.g., [10] that improve the computa-
tional efficiency of P2D model, the complex mathematical struc-
ture still makes it unsuitable for real-time estimator design.
Owing to this, researchers generally resort to model reduction
techniques to derive a model suitable for real-time estimator
design. The SPM is one of the popular reduced electrochemical
models that we adopt in this paper.

Essentially, the SPM is derived by approximating each elec-
trode as a single spherical particle and applying volume-averaging
assumptions [15,16]. This approximation leads to two linear diffu-
sion PDEs for Li-ion mass conservation in both electrodes given
by Eq. (1). The output voltage map is derived from
Butler–Volmer kinetics, electrical potential, and electrode thermo-
dynamics and is given by Eq. (2)
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where Uþ and U� are the open-circuit potentials as functions of Li-
ion surface concentration and temperature, c6

s is the Li-ion concen-
tration of the positive and negative electrode, cþs;e and c�s;e are the
surface concentrations of the positive and negative electrode, V is
the output voltage, and I is the input current (the reader may refer to
the Nomenclature for the definitions of the rest of the variables).
The i60 are the exchange current densities given by

i60 ¼ K6ðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cec6

s;e c6
s;max � c6

s;e

� �r
(3)

Along with the electrochemical SPM model, the following
lumped thermal model derived from the energy balance of the cell
is considered [39] and is given by
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where T is the lumped averaged temperature of the cell and
ð@U6=@TÞ are functions of c6

s;e [39]. Here, a thermal modeling
approach in Refs. [39,41] is followed where a lumped thermal
model is applied that predicts a lumped-temperature averaged
over the cell. However, more detailed thermal model, e.g., the one
in Refs. [31,32] can be applied here which may be considered as a
future extension of the present work. Now considering (4), note
that the temperature affects the open-circuit potential and over
potential terms in Eq. (2), whereas U6 and @U6=@T contribute to
the heat generation in Eq. (4). Moreover, in this study, we assume
that the solid phase diffusion coefficients (D6

s ) and the reaction rate
constants (K6) show Arrhenius dependence on temperature [39].
Apart from those, the contact resistance (Rf ) is also a function of
temperature although the dependence is assumed to be linear. To
summarize, the temperature-dependent parameters are modeled by

K6 Tð Þ ¼ K6
refexp
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Rf Tð Þ ¼ Rf 0 þ aT

(5)

where Tref is reference temperature, K6
ref and D6

s;ref are the parame-
ter values at that reference temperature, Rf 0 is the constant part of
the contact resistance and a is the proportional constant.

Remark 1. In general, the contact resistance Rf could be a non-
linear function of the temperature. However, the linear depend-
ence of Rf on temperature assumed here will be helpful in
simplifying the observer design problem in the next section,
Adaptive Observer Design.

In this study, we use the following approximation of the open
circuit potential expression [39]:

U6 c6
s;e;T

� �
� U6 c6

s;e;Tref

� �
þ @U6

@T
ðT � TrefÞ (6)

Note that there are some simplifying assumptions taken while
developing the SPM. First, the electrolyte dynamics is not taken into
account. The solid material charge dynamics is disregarded while
the molar flux is averaged. Moreover, the SPM is more suitable for
lower charge/discharge rates when the mass and charge transport
through the electrolyte are negligible. In recent literature, some
improved versions of the SPM are presented which relax some of
these aforementioned assumptions and extend the model to be appli-
cable for higher charge/discharge scenarios. In Ref. [42], the electro-
lyte concentration and potential dynamics are considered by
approximating them using polynomial functions. A similar exten-
sion is developed in Ref. [43] including nonuniform reaction distri-
bution. In Ref. [44], a seventh-order, enhanced SPM with electrolyte
diffusion and temperature-dependent parameters is developed to
extend the conventional SPM. Nevertheless, despite the improved
predictive capability of these enhanced models, we used the conven-
tional SPM [15,16]; due to its suitability for the analytical adaptive
observer designs, we propose here. In any case, it should be empha-
sized that the conventional SPM is a tradeoff between amounts of
electrochemical phenomenon captured and the simplified form
needed for observer design and real-time implementation.

Model Reduction and Finite-Dimensional

Approximation

The two-electrode SPM discussed in the previous section,
Lithium-Ion Cell Electrochemical-Thermal Model, suffers from

weak observability of the full state from differential voltage mea-
surement [16]. The common approach to deal with this issue is to
approximate Li-ion concentration in the one electrode as an algebraic
function of the concentration in another electrode [16,17]. In this pa-
per, we follow the approach in Ref. [17] for model reduction where
the positive electrode concentration is considered as an algebraic
function of the negative electrode concentration. The purpose of this
step is to get an observable model (a single PDE in this case) for ob-
server design. This single PDE describes the negative electrode diffu-
sion dynamics along with a nonlinear output voltage map. Although
the fidelity of this reduced model is not as high as other complex
models such as P2D, this reduced model is suitable for observer
design due to its observability and simpler mathematical structure.

After that the spatial derivatives of the PDE is discretized by
finite central difference method while keeping the time derivatives
intact. The discretization is illustrated in Fig. 1. The resulting or-
dinary differential equations are

_cs0 ¼ �3acs0 þ 3acs1

_csm ¼ 1� 1

m

� �
acs m�1ð Þ � 2acsm þ 1þ 1

m

� �
acs mþ1ð Þ

_csM ¼ 1� 1

M

� �
acs M�1ð Þ � 1� 1

M

� �
acsM � 1þ 1

M

� �
bI

(7)

with m ¼ 1;…; ðM � 1Þ, discretization step D ¼ R=M,
a ¼ D�s =D

2, b ¼ 1=a�s FDAL�. The voltage equation can be
derived from Eq. (2) by substituting c�s;e ¼ csM and
cþs;e ¼ k1csM þ k2 where k1 and k2 are constants in the algebraic
relationship between positive and negative electrode Li-ion con-
centrations. These constants can be derived considering
@=@t nLið Þ ¼ 0 where nLi is the total number of Li-ions [17].
Finally, the output voltage expression is given by
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�RT

aþF
sinh�1 I

2aþs ALþiþ0
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�RT
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2a�s AL�i�0
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þ Uþ k1csM þ k2ð Þ � U� csMð Þ � Rf ðTÞI (8)

where the exchange current densities are given by

iþ0 ¼ KþðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ceðk1csM þ k2Þ cþs;max � ðk1csM þ k2Þ

� �r

i�0 ¼ K�ðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cecsM c�s;max � csM

� �r (9)

The cell thermal dynamics is used as it is given by Eq. (4).

Fig. 1 Illustration of SPM with discretized nodes
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Estimation Problem

State-Space Model Formulation and Analysis. The finite-
dimensional state-space model for the Li-ion cell can be
assembled from Eqs. (7) and (4) along with the output voltage
map formed using Eq. (8) and is given as

_x1 ¼ hf1 x2ð ÞAx1 þ Bu

_x2 ¼ uf2 x1M; x2; y1ð Þ � k x2 � x21ð Þ
y1 ¼ h x1M; x2; uð Þ � Rf 0u� ax2u

y2 ¼ x2

(10)

where x1 ¼ ½cs1;…; csM�T 2 RM is the state vector describing
Li-ion concentrations at various nodes, x1M ¼ x1 Mð Þ ¼ csM 2 R is
the surface concentration state, x2 2 R is temperature state and
x21 2 R is the coolant/ambient temperature, h ¼ D�s;ref=D

2 2 R is
the scalar parameter related to the diffusion coefficient, Rf 0 2 R is
the constant part of the contact resistance, a 2 R is the parameter
of the temperature-dependent part of the contact resistance,
y1 2 R is the measured voltage, y2 2 R is the measured tempera-
ture, u 2 R is the input current, f1 :R! R is a scalar function of
the temperature given by the exponential term in the Arrhenius
equation (5), A 2 RM�M is the tridiagonal matrix formed from
Eq. (7), B ¼ ½0;…; 0;BM�T 2 RM�1 is a column vector formed by
Eq. (7) where BM ¼ 1=a�s FDAL�, f2 :R3 ! R is a scalar function
formed by Eq. (4), k 2 R is a scalar parameter, h :R3 ! R is a sca-
lar function derived from the voltage map (8).

Considering Eq. (7), the zeroth node concentration does not have
any contribution in the dynamics of the other nodes. Therefore,
inclusion of the zeroth node dynamics results in an unobservable
state-space model. The reason behind this lies in the particular struc-
ture of the A matrix obtained from the central finite difference dis-
cretization of the boundary condition. Moreover, other type of
discretization such as forward difference will lead to cs0 ¼ cs1 mak-
ing inclusion of cs0 dynamics redundant in the state-space model.
Consequently, simply dropping the first dynamic equation in Eq. (7),
an observable state-space model (10) is obtained. If required, the zer-
oth node concentration can be approximated from the estimated con-
centration of the first node using an open-loop observer (just the
copy of the plant) based on the first equation in Eq. (7). Moreover,
as will be illustrated later, the zeroth node concentration does not
contribute to the computation of volume averaged bulk SOC of the
cell.

We make the following observations of the system (10).
Observation I: The A matrix in Eq. (10) is negative

semidefinite.
Observation II: The functions f1, f2, and h are bounded func-

tions and f1 is positive.
Observation III: The local observability of Eq. (10) can be veri-

fied by observability matrix rank condition on linearized version
of Eq. (10) at different points of the operating regime [17,24].

Observation IV: The output y1 is a monotonically increasing
function of the surface concentration x1M for a given current and
temperature (given in Fig. 2). Therefore, the following fact can be
concluded: given any u ¼ u�, x2 ¼ x�2, and Rf ¼ R�f , for two

different values x
ð1Þ
1M and x

ð2Þ
1M, we have y

ð1Þ
1 ¼ hð1Þ

x
ð1Þ
1M; x

�
2; u
�

� �
� R�f u� and y

ð2Þ
1 ¼ hð2Þ x

ð2Þ
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�
2; u
�

� �
� R�f u�. Now,

using the monotonically increasing property, we can write that
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Estimation Problem Formulation. State estimation: The state
estimation problem consists of following elements:

Bulk SOC: Bulk SOC represents the available energy in the
cell. It can be computed from the full state vector x1 information
using the volume averaging formula

SOCBulk ¼
1

4pR3c�s;max

ðR

0

4pr2c�s ðr; tÞdr (11)

Surface SOC: Surface SOC represents the power capability of the
cell. The state x1M indicates the surface SOC.

Temperature: Note that estimation of temperature state x2 is
optional as we directly measure the cell temperature. However,
the estimated temperature can be used as filtered version of the
noisy measurement.

Parameter estimation: The parameter estimation problem con-
sists of the following elements:

Diffusion coefficient: This is represented by h in Eq. (10).
Contact resistance: This is represented by Rf in Eq. (10). Note

that Rf has two components: a constant term and a temperature-
dependent term. To simplify the observer design process, we
assume that the parameter of the temperature dependent term a is
known with sufficient accuracy and we concentrate on the estima-
tion of the constant term Rf 0. The assumption that the parameter a
is known with sufficient accuracy essentially helps in reducing the
number of unknown parameters to be estimated online. Like other
known model parameters, this parameter can be identified a priori
by offline identification techniques.

Active material volume fraction of the negative electrode: This
is represented by active surface area (a�s ) as a�s ¼ 3es=R, where es is
the active material volume fraction. The parameter a�s is present in ma-
trix B and function h in Eq. (10). However, sensitivity analysis showed
that the error in a�s parameter has negligible effect on function h while
it has significant impact on the B matrix. Hence, the uncertainty due to
a�s is assumed to be translated into the parameter BM which is the last
and only nonzero element in B matrix. This is similar to the uncertainty
in the boundary input coefficient assumed in Ref. [24].

Apart from improving the accuracy of the state estimates, the
estimated information of these parameters can be used as an SOH
indicator [40,45].

Adaptive Observer Design

In existing literature, Lyapunov’s stability analysis is found to
be one of the useful approaches for adaptive observer design
[46,47]. In this paper, we adopt a similar approach where the
adaptive observer is designed and analyzed via Lyapunov’s direct
method. The proposed adaptive observer scheme estimates the
states (x1, x2) and parameters (h, Rf 0, BM) using the measurements
(y1, y2, u). All the other model parameters and functions are
assumed to be known.

The adaptive observer schematic is given in Fig. 3. The struc-
ture consists of two observers working in cascade. Observer I esti-
mates the surface concentration (x̂1M), temperature (x̂2), and
contact resistance parameter (R̂f 0) using voltage (y1) and tempera-
ture (y2) measurement. Observer II estimates the full concentra-
tion state vector (x̂1), diffusion coefficient (ĥ), and B matrix
parameter (B̂M) using the estimates of surface concentration (x̂1M)
and temperature (x̂2) from Observer I. Note that, in Observer II,
the use of estimated temperature is optional as we have directly

Fig. 2 Output voltage (y1) as a function of surface concentra-
tion (x1M )
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measured temperature. However, we opt to use the estimated temper-
ature which is a filtered version of the noisy measured temperature.

The motivation behind splitting the observer structure into two
parts lies in the simplification of the design and tuning. In essence,
the full state and parameter vector to be estimated are partitioned
into two groups. The first group consists of the surface concentra-
tion and temperature, which are directly related to the available
measurements (y1, y2), and contact resistance, which enters the
model as a multiplier to the measured input current; the second
group contains the rest of the states and parameters. Then in a cas-
caded manner, Observer I estimates the first group, and feeds it to
Observer II, which subsequently estimates the second group.

Design of Observer I. In the design of Observer I, we concen-
trate on the following reduced-order system obtained by partition-
ing the full dynamics given in Eq. (10):

_Rf 0 ¼ 0

_x1M ¼ hf1 x2ð ÞA1x1ðM�1Þ þ hf1 x2ð ÞA2x1M þ BMu

_x2 ¼ uf2 x1M; x2; y1ð Þ � k x2 � x21ð Þ
y1 ¼ h x1M; x2; uð Þ � Rf 0u� ax2u

y2 ¼ x2

(12)

where x1M is the surface concentration, x1ðM�1Þ 2 RM�1 is the rest
of the state vector x1 except x1M, Rf 0 is the unknown parameter,
A1 and A2 are the partitioned matrices originating from the last
row of the x1 dynamics in Eq. (10). Note that the reduced-order
system (12) is an uncertain system due to uncertainties in h, BM,
and x1ðM�1Þ.

The observer structure is given as

_̂x1M¼ �hf1 x̂2ð ÞA1�x1ðM�1Þ þ �hf1 x̂2ð ÞA2x̂1Mþ �BMuþL1ðy1� ŷ1Þ
_̂x2¼uf2 x̂1M; x̂2;y1ð Þ�k x̂2�x21ð ÞþL2ðy2� ŷ2Þ
ŷ1¼h x̂1M; x̂2; uð Þ� R̂f 0u�ax̂2u

ŷ2¼ x̂2

(13)

where �h and �BM are constant (guessed or nominal) values, and
�x1ðM�1Þ is the partitioned state vector obtained from the open-loop
model without any measurement feedback. The observer error
dynamics can be written as

_~x1M ¼ F1 � L1~y1

_~x2 ¼ u~f2 � k~x2 � L2~y2

~y1 ¼ ~h� ~Rf 0u� a~x2u

~y2 ¼ ~x2

(14)

where F1¼ hf1 x2ð ÞA1x1 M�1ð Þ þhf1 x2ð ÞA2x1M� �hf1 x̂2ð ÞA1�x1 M�1ð Þ
� �hf1 x̂2ð ÞA2x̂1M þ BM� �BMð Þu; ~h ¼ h x1M; x2; uð Þ�h x̂1M; x̂2; uð Þ; ~f2

¼ f2ðx1M; x2; y1Þ � f2ðx̂1M; x̂2; y1Þ; ~Rf ¼Rf � R̂f ; ~x1¼ x1� x̂1; ~x2

¼ x2� x̂2; ~y1 ¼ y1� ŷ1; ~y2 ¼ y2� ŷ2; and L1, L2 are observer gains
to be determined.

The following Lyapunov function candidate is chosen to ana-
lyze the convergence of error dynamics:

V ¼ 1

2
~x2

1M þ
1

2
~x2

2 þ
1

2
~R2

f 0

The derivative of the Lyapunov function candidate is given as

_V ¼ ~x1M
_~x1Mþ ~x2

_~x2þ ~Rf 0
_~Rf 0

) _V ¼ ~x1M F1�L1~y1ð Þþ ~x2 u~f2� k~x2�L2~y2

� 	
� ~Rf 0

_̂Rf 0

) _V ¼ ~x1M F1�L1
~h� ~Rf 0u�a~x2u
� 	� 	

þ ~x2 u~f2� k~x2�L2~y2

� 	
� ~Rf 0

_̂Rf 0

) _V ¼ ~x1M F1�L1
~h

� 	
þL1~x1M

~Rf 0uþ ~x2 u~f2þL1a~x1Mu� k~x2

�
�L2~y2Þ� ~Rf 0

_̂Rf 0

From Observation IV, we can write that sgn ~h
� 	
¼ sgn ~x1Mð Þ

which implies that ~x1M
~h > 0 or equivalently, ~x1M

~h ¼ ~x1Mj j ~h
�� ��.

Remark 2. Here, ~h ¼ h x1M; x2; uð Þ � h x̂1M; x̂2; uð Þ is not only an
implicit function of ~x1M but also an implicit function of ~x2. How-
ever, h is much less sensitive to temperature x2 than the surface
concentration x1M. Moreover, we have temperature measurement
available which means ~x2 will always have negligible effect on ~h.
Therefore, we can reasonably apply Observation IV in the present
scenario even when ~x2 6¼ 0 identically.

Based on the above argument and ~y2 ¼ ~x2, _V can be written as

_V ¼ ~x1MF1 � L1 ~x1Mj j ~h
�� ��� 	
þ u~f2~x2 þ L1a~x2~x1Mu� ðk þ L2Þ~x2

2

� 	
þ L1~x1M

~Rf 0u� ~Rf 0
_̂Rf 0

Using the inequality, ab � abj j ¼ aj j bj j

_V � ~x1Mj j F1j j � L1 ~x1Mj j ~h
�� ��� 	
þ u~f2

�� �� ~x2j j þ L1a~x1Muj j ~x2j j
�

� k þ L2ð Þ ~x2j j2Þ þ L1~x1M
~Rf 0u� ~Rf 0

_̂Rf 0

) _V � ~x1Mj j F1j j � L1
~h
�� ��� 	
þ ~x2j j u~f2

�� ��þ L1a~x1Muj j
�

�ðk þ L2Þ ~x2j jÞ þ L1~x1M
~Rf 0u� ~Rf 0

_̂Rf 0

Now, the following adaptive law is chosen for the estimation of
contact resistance:

_̂Rf 0 ¼ �L3sgn uð Þsgn ~y1ð Þ) _̂Rf 0

¼ �L3sgnðuÞsgn ~h� ~Rf 0u� a~x2u
� 	

Consequently, the _V equation can be written as

_V � ~x1Mj j F1j j � L1
~h
�� ��� 	
þ ~x2j j u~f2

�� ��þ L1a~x1Muj j � k þ L2ð Þ ~x2j j
� 	

þ L1~x1M
~Rf 0uþ L3

~Rf 0sgnðuÞsgn ~h� ~Rf 0u� a~x2u
� 	

(15)

In the first term on the right-hand side of Eq. (15), for a suffi-
ciently high L1 > F1j j= ~h

�� ��, ~x1Mj j F1j j � L1
~h
�� ��� 	

will be negative.
This means that ~x1Mj j will always decrease till this condition
L1 > F1j j= ~h

�� �� is true. However, ~x1M will not go to zero. It will
stay on a bounded manifold in the error space determined by the
value of L1 and the magnitude of F1j j.

Similarly, we can analyze the second term in right-hand side of
Eq. (15). Due to some preselected high positive L2, ~x2j j will

Fig. 3 Adaptive observer scheme
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decrease until the condition L2 > u~f2

�� ��þ L1a~x1Muj j
� 	

= ~x2j j is true.
Consequently, ~x2j j will stay on some bounded manifold in the
error space determined by the value of L2 and magnitude of

u~f2

�� ��þ L1a~x1Muj j
� 	

.
Next, we consider the third and fourth term on the right-hand

side of Eq. (15). After convergence of the second term,
the steady-state error ~x2�ss is negligible. Then, under the condition
~h
�� �� < ~Rf 0u

�� ��, we can write sgn ~h� ~Rf 0u� a~x2�ssu
� 	

¼ sgn

� ~Rf 0u
� 	

¼ �sgn ~Rf 0

� 	
sgn uð Þ. Consequently, the third and fourth

term becomes L1~x1M
~Rf 0u� L3

~Rf 0sgn ~Rf 0

� 	
. Then with the use of

the inequality, ab � abj j ¼ aj j bj j, the above expression becomes
~Rf 0

�� �� L1 ~x1Mj j uj j � L3ð Þ. For some preselected high positive L3 will

make ~Rf 0

�� �� to decrease till one of the two conditions

L1 ~x1Mj j uj j < L3 or ~h
�� �� < ~Rf 0u

�� �� is true. Subsequently, ~Rf 0

�� �� will

decrease and stay on some bounded manifold in the error
space determined by the values of L3, L1, and magnitude of ~x1Mj j
and ~h

�� ��.
This Lyapunov analysis concludes that for some high observer

gains, the errors ~x1M, ~x2, and ~Rf 0 will go to some bounded mani-
fold. For sufficiently high values of L1 and L2, the steady-state
value of ~x1M and ~x2 can be made negligibly small for all practical
purposes. Next, the estimates x̂1M and x̂2 will be used by Observer
II with the assumption of negligible steady-state values of error
variables ~x1M and ~x2.

Remark 3. The convergence of the estimate of the contact
resistance (R̂f 0) requires nonzero input current (u 6¼ 0). This is
also evident from Eq. (12) as the contact resistance enters into the
output equation as multiplied by the current (Rf 0u).

Design of Observer II. In the design of Observer II the whole
Li-ion concentration dynamics of x1 with unknown parameters h
and BM are considered. This partial dynamics is given as

_h ¼ 0

_BM ¼ 0

_x1 ¼ hf1 x2ð ÞAx1 þ ½0;…; 0;BM�Tu

y1M ¼ x1M ¼ Cx1 where C ¼ ½0;…; 0; 1�

(16)

where x1 is the whole Li-ion concentration vector, h and BM are
the unknown parameters, temperature x2 is the estimate from
Observer I and y1M is the estimated surface concentration from
Observer I. We assume that the steady-state error is negligible in
both the estimates due to a proper selection of gains in Observer I.

The observer structure is given as

_̂x1 ¼ ĥf1 x2ð ÞAx̂1 þ ½0; :; 0; B̂M�Tuþ L4ðy1M � ŷ1MÞ
ŷ1M ¼ Cx̂1

(17)

The observer error dynamics can be written as

_~x1 ¼ hf1 x2ð ÞAx1 � ĥf1 x2ð ÞAx̂1 þ ½0; :; 0; B̂M�Tu� L4

~y1M~y1M ¼ C~x1

(18)

The following Lyapunov function candidate is chosen to ana-
lyze the convergence of the error dynamics:

V ¼ 1

2
~xT

1 ~x1 þ
1

2
K1

~h2 þ 1

2
K2

~B2
M with ðK1;K2 > 0Þ (19)

The derivative of the Lyapunov function candidate can be writ-
ten as (we drop the argument of the function f1 for brevity)

_V ¼ ~xT
1

_~x1 þ K1
~h _~hþ K2

~BM
_~BM

) _V ¼ ~xT
1 hf1Ax1 � ĥf1Ax̂1 � L4~y1M

� �
þ ~xT

1 0; ::; ~BM


 �T
u

þ K1
~h _~hþ K2

~BM
_~BM

) _V ¼ ~xT
1 hf1A~x1 þ ~hf1Ax̂1 � L4C~x1

� �
þ ~y1M

~BMuþ K1
~h _~h

þ K2
~BM

_~BM

) _V ¼ hf1~xT
1 A~x1 � ~xT

1 L4C~x1 þ ~xT
1

~hf1Ax̂1 þ K1
~h _~hþ ~y1M

~BMu

þ K2
~BM

_~BM

Considering slowly varying parameters ( _h; _BM ¼ 0)

_V ¼ hf1~xT
1 A~x1 � ~xT

1 L4C~x1

� 	
þ ~h f1x̂T

1 AT ~x1 � K1
_̂h

� �
þ ~BM ~y1Mu� K2

_̂BM

� �
(20)

Next, the following adaptation laws are chosen:

_̂BM ¼ u~y1M=K2

_̂h ¼ L5~y1M=K1

(21)

where L5 is to be determined. With the choice of these adaptation
laws, the third term on right-hand side of Eq. (20) vanishes. Con-
sidering the second term on right-hand side of Eq. (20)

~h f1x̂T
1 AT ~x1 � L5~y1M

� 	
¼ ~h f1x̂T

1 AT ~x1 � L5C~x1

� 	
¼ f1x̂T

1 AT � L5C
� 	

~x1
~h

To vanish the second term in Eq. (20), the following condition
needs to be satisfied:

f1x̂T
1 AT ¼L5C) f1x̂T

1 ATCT ¼L5CCT)L5¼ f1x̂T
1 ATCT ; as CCT ¼ 1

Consequently, the second adaptation law in Eq. (21) becomes

_̂h ¼ f1x̂T
1 ATCT ~y1M

K1

(22)

With the choice of these adaptation laws, the Lyapunov func-
tion derivative becomes

_V ¼ hf1~xT
1 A~x1 � ~xT

1 L4C~x1

� 	
(23)

The observer gain L4 is chosen such that L4C becomes positive
semidefinite leading to �~xT

1 L4C~x1 � 0. Note that the matrix L4C
cannot be negative definite due to the structure of the vector C.
Using Observation I which states that A is negative semidefinite,
we can conclude that hf1~xT

1 A~x1 � 0 as the function f1 and parame-
ter h are always positive from their physical properties. From this
analysis, it can be concluded that _V ¼ �~xT

1 b~x1 � 0 where
b ¼ hf1A� L4C. Hence, the boundedness of the estimation errors
~x1, ~h, and ~BM is proved. Further, the asymptotic convergence of
the errors to zero is analyzed next using a “Lyapunov-like” analy-
sis based on Barbalat’s lemma [48,49].

Asymptotic Convergence of ~x1. In this section, it will be
shown that _V ! 0 as t!1. Note that the Lyapunov function V
is lower-bounded by choice and _V � 0 is proved in the previous
analysis. Uniform continuity of _V is equivalent to boundedness of
€V which can be written as

€V ¼ �2~xT
1 b _~x1; where

_~x1 ¼ hf1 x2ð ÞAx1 � ĥf1 x2ð ÞAx̂1 þ 0;…; 0; ~BM


 �T
u� L4C~x1
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Note that x1, h, and f1 all are bounded from the physical properties
of the system. Moreover, input u is also considered to be bounded.
From Lyapunov analysis in the previous section, Design of Observer
II, it is concluded that ~x1, ~h, and ~BM are bounded. Therefore, x̂1 and
ĥ are also bounded. So, it can be concluded that _~x1 is bounded which
in turn concludes the boundedness of €V. Hence, it can be concluded
using Barbalat’s lemma that _V ! 0 as t!1. Then, using _V
expression (23), it can be shown that ~x1 ! 0 as t!1.

Asymptotic Convergence of ~h and ~BM. In this section, it

will be shown that _~x1 ! 0 as t!1. It is already shown in
the previous section, Asymptotic Convergence of ~x1, that ~x1 ! 0

as t!1. The limit
Ð1

0
_~x1dt ¼ lim

t!1
~x1ðtÞ � ~x1 0ð Þ ¼ �~x1 0ð Þ exists

and is finite. With the signals already shown bounded in the previ-
ous step and additionally assuming _u bounded, the boundedness

of €~x1 can be concluded. Hence, using Barbalat’s lemma, it can be

concluded that _~x1 ! 0 as t!1. Considering the _~x1 expression

with ~x1 ! 0, _~x1 ¼ ~hf1 x2ð ÞAx1 þ 0;…; 0; ~BM


 �T
u. As _~x1 ! 0, the

above expression boils down to

~hf1 x2ð ÞAx1 þ 0;…; 0; ~BM


 �T
u ¼ 0

) f1 x2ð ÞAx1
~hþ 0;…; 0; u½ �T ~BM ¼ 0

) f1 x2ð ÞAx1½ � 0;…; 0; u½ �T

 �

M�2

~h
~BM

" #
2�1

¼ 0

)XM�2

~h
~BM

" #
2�1

¼ 0; with X ¼ f1 x2ð ÞAx1½ � 0;…; u½ �T

 �

) XTX

 �

2�2

~h
~BM

" #
2�1

¼ 0

Finally, it can be concluded that ~h; ~BM ! 0 as t!1 under the
condition XTXj j 6¼ 0, which in turn leads to the condition u 6¼ 0.
Note that the convergence of the parameter estimates to their true
values requires nonzero input current.

Remark 4. The asymptotic convergence analysis of ~x1, ~h, and
~BM is built on the assumption that Observer I provides sufficiently
accurate estimates of the surface concentration and temperature.
However, as there will always be a steady-state error in the esti-
mates of Observer I in reality, ~x1, ~h, and ~BM will converge to finite
nonzero steady-state values. Moreover, one of the important
assumptions for the convergence of ~h and ~BM is the boundedness
of the _u, which is the derivative of the input current. To comply
with this assumption, in real-time implementations of the ob-
server, an input current rate limiter should be used to retain satis-
factory performance of the observer.

Systematic Approach for Selection of Observer Gains. As
evident in the previous analysis, observer gains selection is of crit-
ical importance in this proposed adaptive observer scheme. In this
section, a systematic approach is provided for selecting the ob-
server gains.

Observer I:
Step I:

— Select a high positive gain L1.
— Then select a high gain L3 satisfying the condition

L1 ~x1Mj jmax uj jmax< L3, where uj jmax is the maximum possi-
ble current and ~x1Mj jmax is the allowable value of state error.

— Note the convergence rate and steady-state errors in ~x1M and
~Rf 0. Increase gain L1 and L3 meeting the condition
L1 ~x1Mj jmax uj jmax< L3 until acceptable convergence rates
and steady-state errors are achieved. However, the designer
should keep in mind the possible tradeoff between measure-
ment noise amplification and acceptable steady-state error
due to high observer gains.

Step II:

— The gain L2 can be selected independently of other gains.
After initializing L2 to a high value, increase it until an ac-
ceptable convergence rate and steady-state error is
achieved.

Observer II:
Step III:

— Select a high L4 ¼ r½1; ::; 1�T with r > 0 such that L4C is
positive semidefinite. Keep increasing r until an acceptable
convergence rate and steady-state error is achieved for ~x1.

Step IV:

— For a given selection of L4, the gains K1 and K2 for the pa-
rameter update laws should be tuned together. These two
gains are observed to have a strong interdependence due to
the presence of these corresponding parameters in the same
dynamic equation. After initializing K1 and K2 with arbi-
trary small positive numbers, keep increasing them until ac-
ceptable convergence rates are achieved. Note that proper
care should be taken such that the selection of K1 and K2

should not significantly impact the ~x1 convergence.

Simulation Studies

In this section, we demonstrate the performance of the adaptive
observer scheme via simulation studies. In this study, the two-
electrode SPM is used as the plant model. Model parameter values
of Li-ion cell have been taken from Refs. [11,39]. The cell has the
following characteristics: Metal oxide positive electrode, graphite
negative electrode, cell capacity 6 Ah. To emulate a realistic sce-
nario, 10 mA, 10 mV, and 1 �C variance noise is added to the cur-
rent, voltage, and temperature measurement, respectively. The
state and parameter estimates in the observers are initialized with
different initial conditions than that of actual plant. The estimation
performance is shown in Figs. 4–6 for a urban dynamometer driv-
ing cycle (UDDS). UDDS is originally a velocity profile for test-
ing a full-size (electric) vehicle, from which a scaled-down
current profile is constructed.

Fig. 4 Temperature and voltage estimation performance
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From Figs. 4–6, it can be concluded that the state and parameter
estimates converge with a reasonable accuracy. Note that the con-
vergence rates for the parameter estimates are much slower than
those of the states. However, this should not be a problem due to
the time scale separation between states and parameters dynamics.

Experimental Results

In this section, experimental results are shown for the adaptive
observer scheme applied to a commercial high power 2.3 Ah
LiFePO4–Graphite cell. In the experimental studies, some of the
model parameters of Eq. (10) have been identified using experi-
mental data of voltage, current, and temperature while others were

adopted from available literature for this particular cell. Although
the exchange current densities (i60 ) in Eq. (3) are generally a func-
tion of Li-ion concentrations, we follow the assumption of con-
stant exchange current densities taken in some existing works
[41,50,51] to simplify the model identification process. For model
identification, we solved a nonlinear least square optimization
problem to obtain the parameter set that gives the best fit between
experimental and model data. The main model parameters are
given in Table 1.

Similar to the simulation studies, the state and parameter esti-
mates are initialized with incorrect initial conditions to evaluate
the error convergence of the observers. Then, the evolution of the
estimated variables with time is compared to the actual variables.

Remark 5. The only variables that are measured experimentally
are the voltage, current, and temperature. Therefore, the “actual”
voltage and temperature is the experimentally measured voltage
and temperature. To compute the actual bulk SOC, coulomb-
counting technique is used. This is possible because of the suffi-
ciently accurate current measurement as mentioned in Ref. [12].
The actual surface SOC evolution is taken from the model which
is initialized using the fitted experimental data. The actual param-
eters of contact resistance, diffusion coefficient, and BM are also
taken from the fitted experimental data by offline system identifi-
cation. The presented “validation” for these variables (which are
not measured in real-time) should therefore be taken with care: It
is only meant to show that the estimates from the observers are
converged to reasonable values in various experiments. Complete
validation of the observers’ performance requires additional in
situ measurements (such as neutron imaging [54]) and can be con-
sidered as a future extension of this work.

Two sets of experimental studies have been performed based
on two different current profiles. In the first study, a constant cur-
rent discharge 2C is used. The results for this study are given in
Fig. 7 (voltage and temperature estimation), Fig. 8 (surface and
bulk SOC), and Fig. 9 (parameter estimation). As expected, the
estimated variables converged to a bounded error ball starting
with incorrect initialization. Note that the voltage and temperature
estimates have almost negligible steady-state error as should be
expected given the measured output variables involve the same
states. However, the steady-state error of the unmeasured states
and of the parameter estimates is relatively larger.

In the second experimental study, a pulse discharge profile is
applied to the cell. The results for this study are given in Figs. 10
(voltage and temperature estimation), 11 (surface and bulk SOC),
and 12 (parameter estimation), respectively. Similar to the first ex-
perimental study, the estimated variables converged to a bounded
error ball starting with incorrect initialization.

Fig. 5 Bulk SOC and surface concentration estimation
performance

Fig. 6 Parameter estimation performance

Table 1 Model parameters (“F” denotes fitted values)

Parameters Values

D�s;ref 2:4� 10�15 m2=s (F)
iþ0 0:0036 A=m2 (F)
i�0 0:6102 A=m2 (F)
Rf 0:0532 X (F)
k1 �0:9442 (F)
k2 22; 799 mol=m3 (F)
a�s 3:48� 105 m2=m3 [50]
e�s 0:58 [41]
R� 5� 10�6 m [50]
A 0:18 m2 [50]
L� 3:4� 10�5 m [50]
cþs;max 22; 806 mol=m3 [52]
c�s;max 30; 555 mol=m3 [53]
qv 0:07 kg [50]
Cp 1100 J=kg K [50]
hA 0:07 W=K (F)
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Limitations of the Proposed Scheme

From the simulation and experimental studies, it is observed
that the adaptive observer scheme performs reasonably well in
estimating states and parameters. However, there are some limita-
tions of the proposed scheme. In this section, the following short-
comings of the scheme are discussed and illustrated.

Effect of Modeling Uncertainties. In the proposed adaptive
observer scheme, uncertainties from unmodeled dynamics/
processes are not taken into account explicitly in the design phase.
If such uncertainties are present in the state dynamic equations,
the effect of the uncertainties can be suppressed to a certain extent
using high gains in the observers. However, high gains can
amplify the output uncertainties such as measurement noise.
Therefore, there is a tradeoff between rejecting the uncertainties
in state dynamics and amplifying measurement noise. Moreover,
in the presence of high output uncertainties (other than measure-
ment noise), which originate from the unmodeled phenomena in
the output equations (e.g., uncertainties in Bulter–Volmer
kinetics, overpotentials, etc), the performance of the adaptive
scheme degrades significantly.

The effect of the two aforementioned cases of high output
uncertainty and zero input current is tested experimentally.
Figure 14 shows that at 1550 s, the input current goes to zero.
After the input current goes to zero, the open-loop model voltage

Fig. 7 Voltage and temperature estimation performance for 2C
constant discharge profile

Fig. 8 Surface and bulk SOC estimation performance for 2C
constant discharge profile

Fig. 9 Parameter estimation performance for 2C constant dis-
charge profile

Fig. 10 Applied current, voltage, and temperature estimation
performance for pulse discharge profile
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cannot track the actual voltage, which is evident from the second
subplot of Fig. 14. This indicates the presence of high output
uncertainty where the model output has a significant deviation
from the actual output. Due to the effect of the high output uncer-
tainty, the estimates of the states and the parameters started
diverging after 1550 s which is shown in the third subplot of
Fig. 14. Therefore, this illustration shows that the scheme loses its
effectiveness under the aforementioned scenarios. Another fact
noted from this illustration is that like other estimation algorithms,
persistence of excitation is required for the convergence of the
estimates for this proposed approach. This fact is observed in this
illustration where in case of zero applied current the convergence
is poor.

High Initial Error in BM Estimation. During experimental
and simulation studies, one observation we made is that the over-
all performance of the adaptive scheme degrades with high initial
error ~BM. In Fig. 13, one such scenario is illustrated under 2C con-
stant discharge current. The variable B̂M is initialized with 50%
error. Note that the surface concentration, contact resistance, and
voltage estimation computed via Observer I are reasonably good.
However, the performance of Observer II degrades significantly
as evident from the diverging errors in the Bulk SOC estimate and
diffusion coefficient estimates. The probable reason for this
degraded performance lies in the fact that the reduced model is
only locally identifiable or observable. This limitation of the
design can be easily overcome by minimizing the initial error in
B̂M with accurate accounting for the initial active material volume
fraction of the specific battery cell.

Fig. 11 Surface and bulk SOC Estimation performance for
pulse discharge profile

Fig. 12 Parameter estimation performance for pulse discharge
profile

Fig. 13 Performance of the adaptive observer scheme in pres-
ence of output uncertainties and absence of input current

Fig. 14 Percentage errors in state and parameter estimation
with high initial error in ~BM
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Conclusion

In this paper, an adaptive observer design is presented for si-
multaneous state and parameter estimation of a Li-ion battery cell.
It addresses the combined estimation of SOC and some electro-
chemical parameters, namely, diffusion coefficient, contact resist-
ance, and active material volume fraction of the negative
electrode, which are key requirements for advanced BMS. The
proposed design considers the coupling between electrochemical
and thermal dynamics of the cell. The design is split into two cas-
caded observers each of which is designed based on Lyapunov’s
stability analysis. A systematic approach is provided for the selec-
tion of the relevant gains of the design. Simulation and experi-
mental studies are included which showed the effectiveness of the
design in estimating the Li-ion concentration distribution, which
gives both the bulk and surface SOC, and some electrochemical
parameters, with a desired convergence rate and accuracy. Partic-
ularly, from the experimental studies it is found that the steady-
state bulk SOC and surface concentration estimation errors lie
within 5%. The parameter estimation steady-state error for contact
resistance and diffusion coefficient lies within 15% and 5%,
respectively. In case of BM estimation error, the steady-state error
is around 2%, however, at the cost of smaller initialization error.

However, there are some limitations of this adaptive observer
scheme that need special attention in implementation and should
be subject to further study. First, a high initial error in the input
coefficient parameter estimate degrades the performance of the
scheme. Second, the stability of the overall scheme is not guaran-
teed under persistently zero input current and in the presence of
large output uncertainties. As another future extension of this
work, the proposed observer’s performance can be studied under
different operating conditions such as higher C-rates and low
temperature.
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Nomenclature

A ¼ current collector area (cm2)
As ¼ cell surface area exposed to surroundings (cm2)
a6

s ¼ specific surface area (cm2/cm3)
ce ¼ electrolyte phase Li-ion concentration (mol/cm3)

Cp ¼ specific heat capacity (J/g K)

c6
s ¼ solid phase Li-ion concentration (mol/cm3)

c6
s;e ¼ solid-phase Li-ion surface-concentration (mol/cm3)

c6
s;max ¼ solid-phase Li-ion max. concentration (mol/cm3)

D6
s ¼ diffusion coefficient in solid-phase (cm2/s)

D6
s;ref ¼ diffusion coefficient at Tref (cm2/s)

E6
K ¼ activation energy of diffusion coefficient (J/mol)

E6
Ds ¼ activation energy of reaction rate constant (J/mol)

F ¼ Faraday’s constant (C/mol)
h ¼ heat transfer coefficient of the cell (W/cm2 K)
I ¼ current (A)

K6 ¼ reaction rate constant (cm2.5/mol0.5/s)

K6
ref ¼ reaction rate constant at Tref (cm2.5/mol0.5/s)

L6 ¼ length of the cell (cm)
r ¼ radial coordinate (cm)
R ¼ radius of solid active particle (cm)
�R ¼ universal gas constant (J/mol K)

Rf ¼ contact resistance (X)
Rf 0 ¼ constant part of contact resistance (X)

T ¼ temperature (K)
Tref ¼ reference temperature (K)
T1 ¼ temperature of cooling fluid (K)

U6 ¼ open circuit potential (V)
a ¼ proportional constant of contact resistance (X/K)

�a6 ¼ charge transfer coefficient
v ¼ cell volume (cm3)
q ¼ cell density (g/cm3)

Superscript

6 ¼ positive/negative electrode
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